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◼ ABSTRACT 

In the domain of battery research, the processing of high-resolution microscopy images is a 

challenging task, as it involves dealing with complex images and requires a prior understanding of 

the components involved. The utilization of deep learning methodologies for image analysis has 

attracted considerable interest in recent years, with multiple investigations employing such 

techniques for image segmentation and analysis within the realm of battery research. However, the 

automated analysis of high-resolution microscopy images for detecting phases and components in 

composite materials is still an underexplored area. This work proposes a novel workflow for 

detecting components and phase segmentation from raw high resolution transmission electron 

microscopy (TEM) images using a trained U-Net segmentation model. The developed model can 

expedite the detection of components and phase segmentation, diminishing the temporal and 

cognitive demands associated with scrutinizing an extensive array of TEM images, thereby 

mitigating the potential for human errors. This approach presents a novel and efficient image 

analysis approach with broad applicability beyond the battery field and holds potential for 

application in other related domains characterized by phase and composition distribution, such as 

alloy production.  

◼ INTRODUCTION 

In the era of information, the emphasis has transitioned from data collection to data processing. 

Currently, an abundance of data is accessible across various research domains, and the primary 

hurdle lies in extracting meaningful information through its processing. This principle holds true 

within the realm of materials science, where researchers endeavor to derive valuable insights from 
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their experimental samples, using high resolution microscopy imaging (Hill et al., 2016). The post-

processing of these images has always been a challenge, owing to the complexity of the high-

resolution image and the need for prior knowledge of components involved. Additionally, a 

comprehensive examination necessitates the acquisition of multiple images of the same sample, 

thereby augmenting the burden of post-processing. 

In recent years, high-resolution imaging has become an indispensable tool in the field of battery 

material research, playing a vital role in the development of strategies to address the increasing 

energy demand. High-resolution transmission electron microscopy (HRTEM) stands out as a 

powerful technique used for investigating the microstructure of battery materials, encompassing 

cathodes, anodes, and electrolytes, with atomic resolution (Wang et al., 1999). Among the various 

battery systems under investigation, Li metal batteries have received significant attention due to 

their propensity to store at least 33% more power per pound than traditional Li-ion batteries, 

rendering them suitable for a wide range of applications, including electric vehicles, renewable 

energy integration, and grid-scale energy storage (Cheng et al., 2017). It is important to note that 

cycled Li metal, due to presence of oxides, carbonates, and sulfides, exhibits sensitivity to electron 

beam. Consequently, cryogenic electron microscopy (cryo-EM) technology has emerged, 

expanding the feasibility and necessity of high-resolution imaging in battery research, particularly 

for studying electron beam-sensitive anode materials like electrochemically cycled Li metal (Xu, 

2014; Winter et al., 2018). Solid electrolyte interphase (SEI) formed in the anode materials after 

cycling is regarded as one of the least understood systems in the battery community (Li et al., 

2017; Cheng et al., 2022). Studying the SEI is of scientific interest due to its crucial role in enabling 

long-term cycling in battery systems, as well as its complex composition of both organic and 

inorganic compounds. HRTEM, particularly when used in conjunction with cryogenic techniques, 
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enables the elucidation of the components of the thin SEI layer, which typically has a thickness in 

nanometer scale (Wang et al., 2017). Such characterization methods facilitate SEI engineering and 

the development of improved electrolyte systems. 

In addition to the arduous task of sample preparation for HRTEM, processing the resulting images 

can also present significant challenges due to the high resolution and large amount of data 

produced (Taheri et al., 2016). Furthermore, in situ TEM studies targeting the dynamic interplay 

of properties, structures, and compositions within nanostructures yields substantial datasets 

acquired at elevated frame rates, posing an exceedingly formidable task for comprehensive data 

analysis (Tao & Salmeron, 2011). Recently, novel image analysis techniques have emerged within 

the framework of deep learning, a data processing approach that has gained tremendous popularity 

over the past decade. The proliferation of deep learning techniques within the field of image 

analysis has been spurred by several factors, such as the expanded availability of labeled datasets 

of significant size, notable advances in the realm of deep learning research, and the emergence of 

powerful high-performance frameworks like PyTorch and TensorFlow (Xue-Wen Chen & Xiaotong 

Lin, 2014; Badea et al., 2016). 

  

 

 



5 
 

In the field of battery research, several studies have employed machine learning and deep learning 

techniques for image analysis (Ling, 2022; Lombardo et al., 2022; Furat et al., 2019). The image 

analysis investigations have largely focused on segmenting microscopy and tomography images 

of electrode materials (Yao et al., 2023; Zhang et al., 2022). Automated analysis of high-resolution 

microscopy images for detection of phases and components in composite battery materials is an 

area that remains relatively unexplored. In contrast, there have been several notable works in 

materials science that have focused on detecting phases and components from HRTEM images. 

Figure 1. Schematic of the program flow – High volume of TEM data is acquired for analysis 

→ FFT features are detected using deep learning model → Components found out from 

detected features using ICDD (International Centre for Diffraction Data) database → Each 

feature is isolated and mapped using IFFT → Component detection program is used for high 

volume TEM processing → Intensity profiling and mapping of components obtained. 
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For instance, Liu et al. employed an unsupervised clustering algorithm combined with a scanning 

window technique to detect and group different phases from a TEM image of an AM Inconel 718 

alloy (Liu et al., 2023). The technique can detect and map multiple phases, but there is a possibility 

of the same phase getting identified more than once and the chemical composition of the phases is 

not identified. While the method exhibits efficiency in phase mapping, its suitability for analyzing 

battery materials is more limited compared to alloys.  Zhang et al. proposed an improved Local 

Contrast Attention – UNet (LCA-UNet) for detecting Fast Fourier Transform (FFT) features from 

TEM images of Zirconium oxides (Zhang et al., 2023). The authors utilized a scanning window 

technique to generate the FFT, then identified the features and labeled the corresponding phase 

window. The study used a 64 x 64-pixels region of the 256 x 256-pixels window for detection, 

potentially losing information outside the chosen region. The employed method disregarded the 

inclusion of asymmetrical characteristics, potentially leading to the loss of pertinent information, 

and the designated window was a square region rather than accurately representing the intended 

area. Furthermore, the intricate composition of the cycled Li metal anode samples may lead to 

low-contrast images that are challenging to process. In fact, using smaller-scale FFT images may 

exacerbate this issue, even with advanced deep learning models such as LCA-UNet. 

The workflow in this study for detecting components and phase segmentation from HRTEM 

images is presented in Fig. 1. First, a FFT pattern is generated from the HRTEM image, and a 

trained U-Net segmentation model is used to detect features from the generated FFT image 

cropped half (1024 x 512 pixels). By utilizing the innate symmetry present in the FFT images, half 

cropped FFT images (1024 x 512 pixels) were used for model training. The half cropped FFT 

images performed better than the full FFT images (1024 x 1024 pixels).   The d-spacing of the 

identified features from model generated FFT image is calculated and compared with the material 
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database to detect the components present in the TEM image. Finally, the inverse FFT (IFFT) 

image is generated for each component by masking the actual FFT image using the deep learning 

model, and thresholding is used to map the periodic components present in the TEM image. For 

high-volume TEM processing, this process is repeated for all the TEM images to be analyzed, and 

the intensity profile for each component is generated to observe their evolution over the imaging 

period. Additionally, mapping of each component is compiled into a video for visualizing the 

component evolution. The developed segmentation model can expedite component detection and 

phase segmentation, not only in the battery field but also in alloy manufacturing.  The qualitative 

and quantitative analysis of TEM images in this work decreases the time and effort necessary for 

evaluating substantial quantities of TEM images while mitigating the potential for human error 

caused by cognitive task-induced state fatigue (Behrens et al., 2023) of analyzing a large set of 

TEM images (e.g ~100 images). 

◼ MATERIALS AND METHOD 

TEM Sample Preparation: 

LiF powder was ground in an Ar gas glove box and the ground LiF powder was dispersed on the 

TEM Cu grid. The TEM Cu grid is loaded to Melbuild vacuum transfer holder under Ar 

atmosphere and the sample is transferred into the TEM column without any air exposure. The 

experiment is performed at room temperature for beam damage analysis. For cryo temperature 

measurement, liquid nitrogen was added to the dewar when the holder is fully inserted into the 

column. The system stabilized at ~-165℃ for cryo temperature beam damage analysis.  

. 
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TEM Imaging: 

We used a ThermoFisher Talos F200X TEM electron microscope system with super-low-dose 

TEM techniques to characterize samples. The low dose HRTEM images were acquired with 

controllable electron dose rate (50-1000 e A-2 s-1) at FEI Ceta 16M camera and low dose system. 

The pixel size of the TEM image corresponds to 0.037 nm/pixel. 

Automated training set generation: 

The preprocessing of raw FFT images generated from HRTEM images (using opencv2 library)  

for the purpose of training a segmentation model involves the use of Gaussian filters, which is a 

standard image processing technique available in the widely used SciKit Image python package 

(Pedregosa et al., 2012). The training images generated through this process are produced 

according to specific instructions provided in the accompanying code. In contrast, the production 

of labeled data involves manual input from experts in the field who utilize Adobe Photoshop 

software to identify and mark features in the FFT images. Empirical selection of parameters, such 

as the  standard deviation of the Gaussian kernel, is undertaken in both of these processing steps 

and maintained consistent across all images in the dataset. A standard deviation of 3 was used for 

the Gaussian kernel in the multidimensional Gaussian filter made available by SciPy. 

To generate a training set for the proposed deep learning-based framework for phase identification 

and analysis of TEM images, a total of 80 reduced FFT images (2048 x 2048 pixels), collected 

during multiple experiments, were utilized. To standardize the dataset, the FFT images were 

resized through interpolation to a uniform resolution of 1024 x 1024 pixels. Furthermore, to 

increase the diversity of the dataset, the FFT images were augmented by applying affine 

transformations and image rotations, resulting in a total of 1986 images. To investigate the impact 

of both dataset size and image resolution on model accuracy, a similar data augmentation technique 
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was applied to generate four distinct datasets. Two datasets consisted of 1986 images each, one 

with a resolution of 256 x 256 pixels (resized through interpolation) and the other with 512 x 512 

pixels (resized through interpolation). Additionally, two smaller datasets of 500 images each were 

generated with the same respective resolutions.  Data augmentation of the images was performed 

using the ImageDataGenerator function  

from the popular Tensorflow library. The affine transformations used on the images include : 

Rotation - Randomly rotated slightly by setting a range of ±0.2 degrees, Horizontal Translation - 

Randomly shifted by up to 5% of the image’s width in either the left or right direction, Shearing - 

Slanting the shape of an image, towards the left or right direction by 0.05 degrees, and Zooming - 

Randomly zoomed in or out by up to 5%.  Finally, the generated images were cropped to 1024 x 

512 pixels to obtain the final training set (Fig. S1). This approach ensures that the deep learning 

model is trained on a diverse range of images and can accurately identify and classify phases in 

TEM images. 

Programming and training machine learning models: 

The study employed Python for all programming activities, with the keras framework utilized for 

machine learning. The final dataset consisted of 1968 images with dimensions of 1024 × 512 

pixels, randomly divided into training (90%, or 1771 images) and validation (10%, or 197 images) 

sets. The UNet-type architecture for segmenting 1024 × 512 images used in the study comprised 

three convolutional layers with max-pooling or up-sampling. The models were trained for 100 

epochs on Dell workstations with Nvidia RTX A4000, 16GB, 4DP GPUs, with each model taking 

approximately 10-11 hours to train. The training period was deemed sufficient for experimentation 

with network architecture, data preprocessing, and hyper-parameter tuning. The stability of the 

models was ensured by tracking loss as a function of epoch number, indicating general 
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convergence. Finally, the binary segmentation map, which classified individual pixels as particle 

or background, was obtained by thresholding predicted softmax output for each pixel. 

FFT processing for TEM images 

TEM images can contain complex structures with multiple crystallographic and amorphous 

phases. Therefore, extracting and interpreting statistical information and uncovering the 

underlying physical mechanisms can pose significant challenges. FFT is useful for identifying 

periodic patterns in TEM images, such as lattice fringes, and for extracting information about the 

crystallographic orientation and symmetry of the sample (Jany et al., 2020). For this study, the 

Cryo-EM images of cycled Li metal anode in different electrolytes are used to introduce variability 

and to reduce redundancy. Images of magnification >300 kx are chosen for getting SEI layer of 

the anode in better resolution. The Cryo-EM images of format .dm3/.dm4 generated by GATAN 

micrograph software are used specifically. The TEM image is generated from the .dm3/.dm4 files 

using the DM3lib python library (Pierre-Ivan Raynal, 2014) and the FFT image is generated from 

the TEM image using FFT function from NumPy library in python. The mathematical 

representation of the 2D Fourier transform for an image signal  f(x,y), across an x-y plane can be 

articulated as follows: 

F(u, v) =
1

M ∗ N
 ∑ ∑ f(x, y)e−2πi(

ux
M

+
vy
N

)

N−1

y=0

M−1

x=0

 

Here, F(u,v) is the Fourier transform of f(x,y), and u and v are the spatial frequencies in 

the x and y directions, respectively, and M, N are the width and height of the image respectively. 

The integral is taken over the entire x−y plane. In the field of image processing, the Fourier 

transform is commonly employed to analyze and manipulate the frequency components of an 

[1] 
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image. To achieve a more visually meaningful representation, the zero-frequency component is 

shifted to the center of the transformed array, and the resulting complex number is converted into 

an absolute value. A logarithmic operation is then applied to the absolute value for perceptual 

scaling (Garcia-Garcia et al., 2017). This transformed matrix is subsequently converted into an 

intensity image containing only the logarithm of the absolute values of the complex numbers, 

wherein the pixel values range from 0 (representing black) to 1 (representing white). The resulting 

image is then cropped from the center to generate a reduced FFT image with a size of 2048 x 2048 

pixels (Fig. S2(a)). 

A factor map of dimensions 2048 x 2048 is created, where each pixel is assigned an output value 

based on its position and is then utilized to process the FFT images (Fig. S2(b)). The luminosity 

and contrast of the FFT images are amplified by 80% to compensate for the loss of brightness that 

occurs because of the application of the exponential mapping function. The resulting images are 

deemed suitable for further analysis and are comparable with FFT images of the same TEM image 

generated by GATAN (Fig. S2(d-f)). 

Component detection using the FFT image 

Circular integration is a widely used and straightforward approach for analyzing FFT images 

(Beaudoin & Beauchemin, 2002). The method involves dividing the FFT image into circular bands 

and integrating the pixel values within each band (Fig. 2(c)). The resulting integrated values are 

plotted against the real distance of each circular band, which is determined by calculating the 

reciprocal distance from the center of the FFT image (Fig. S2). To convert the reciprocal distance 

to real distance, the pixel size information of the TEM image file (.dm3/.dm4) is extracted using 

DM3lib and applied to the following formula: 
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4096 ∗ 𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒

√(𝑥 − 511.5)2 + (𝑦 − 511.5)2
 

Here, pixelsize is the calibration information obtained from GATAN software that indicates the 

real size of a pixel in the TEM image and (x,y) is the coordinate of the features or the circular band. 

The periodic components present in the TEM image can be identified by the peaks obtained from 

the diffraction-like graph generated using the circular integration method. The position of the peak 

corresponds to the d-spacing of the periodic components, aiding in the identification of the 

components present in the image. However, the analysis of the noisy FFT images using the circular 

integration method results in a diffraction-like graph that is also noisy, making it difficult to detect 

the peaks accurately (Fig. S2(g-i, j)). 

Hyperparameter Tuning for U-Net model: 

Hyper parameter tuning was carried out using Bayesian Optimization via the Keras Tuner Python 

Library. Bayesian Optimization uses probabilistic models to guide the hyper parameter search 

process. It is particularly useful for black box functions and problems where the objective function 

takes a long time to evaluate.  

In this work, the objective for the optimization was minimizing the validation loss and 15 trials 

were allowed with 100 epochs per trial. A callback was added to the Tuner to ensure that if the 

model’s dice coefficient did not continue to increase after 3 epochs, the training is terminated to 

save experimentation time. 

In each trial, the optimization occurred over with respect to 6 parameters. These include the 

learning rate, convolutional kernel size, number of convolutional filters, convolutional transpose 

kernel size, activation function and 3 drop out values treated separately. The learning rate was set 

[2] 
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to vary between three values which were 1e-4, 1e-5 and 1e-6. The convolutional kernel size was 

set to vary between 3 and 5. The convolutional transpose kernel size was set to vary between 2 and 

3. The convolutional filter was set to vary between 256 and 1024. The activation function was set 

to vary between ReLu, eLu and GeLu. All 3 dropout values were set to vary between 0 and 0.5 

with steps of 0.1. 

 

◼ RESULTS AND DISCUSSIONS 

FFT feature detection using deep learning – high resolution image segmentation 

To address the noisy peaks in the diffraction-like graph, deep learning techniques are employed to 

detect and isolate features in the FFT image, thereby reducing the noise. Semantic segmentation 

is an essential technique employed in machine learning for the identification and classification of 

individual pixels in an image into distinct classes or entities (Kim et al., 2014). By mimicking the 

way in which humans perceive and analyze visual data, semantic segmentation is a fundamental 

step in enabling machines to comprehend and interpret micrography images accurately. In the 

context of micrography, semantic segmentation holds significant potential in distinguishing 

between different cell types or structures at the pixel level, thereby aiding in various fields, 

including medical diagnosis, biological research, and particle sizing (Guo et al., 2018). 

U-Net architecture is a widely used deep learning technique for semantic segmentation. U-Net is 

composed of two main pathways, namely, the contracting and expansive paths. The contracting 

path focuses on capturing the context of the input image, whereas the expansive path enables 

precise localization by up sampling the feature maps (Ronneberger et al., 2015). The present study 

employs the U-Net segmentation model to detect features in the FFT image (Fig. S4) where very 
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few annotated images are used. A large set of training data and corresponding ground truth are 

generated using data augmentation.  

In this study, to address the issue of low signal-to-noise ratio (SNR) in the FFT images, Gaussian 

filtering is employed. The Gaussian blur technique is particularly suitable for images that are prone 

to noise, as the results of filtering are relatively independent of the noise characteristics and 

dependent on the variance value of the Gaussian kernel (Brüllmann & d’Hoedt, 2011; Fan et al., 2019). 

In the context of image segmentation, this method has a limited scope and is not universally 

applicable (Horwath et al., 2020). Rather, its efficacy lies in its ability to accurately distinguish 

between features and noise to produce a more precise segmentation (Alomar et al., 2023). To 

optimize the training set conditions and model parameters, four factors are taken into 

consideration, namely, the size of the training set, resolution of the training image, the number of 

filters, and the threshold of the segmented image.  

 The impact of training set size on image classification accuracy was investigated. Models were 

trained on 500 and 1968 images (all 256x256 pixels) and their performance was compared (Fig. 

S5). The number of annotated images used for training a U-Net model has a significant impact on 

its accuracy (Caicedo et al., 2019). When using small sections of images for training, the training 

accuracy increases in a similar fashion as with large images, but the validation accuracy seems to 

be much lower after each epoch. The study suggests that decreasing the size of the input requires 

decreasing the capacity of the network to avoid overfitting. After training with 1968 images of 256 

x 256-pixels size, the detected features were observed to be more precise and clearer (Fig. S6(e-

f)). However, some features were observed to be missing potentially due to overfitting. (Fig. S6(f)) 

(Fig. S8).  
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A fixed training set of 1968 images was used to compare the segmentation results of 256 x 256 

pixels and 512 x 512pixels images (Fig. S7). It was observed that the missing features in the 256 

x 256 pixels training set images were more accurately identified when the training set resolution 

was increased to 512 x 512 pixels (Fig. S7(c-f)) (Fig. S8) and further improved with 1024 x 

1024pixels resolution (Fig. S9) (Table. S1). However, it should be noted that using larger images 

would lead to increased computational cost and training time, as the U-Net model would need to 

process more pixels (Sabottke & Spieler, 2020). Nonetheless, the use of higher resolution images 

has the potential to enhance the performance of the model by capturing more details and improving 

generalization (Piao & Liu, 2019). 

In semantic segmentation, convolutional layers with a higher number of filters can extract more 

complex patterns from image data effectively (Ahmed & Karim, 2020). The initial layer of filters 

captures basic patterns such as edges, corners, and dots, while the following layers combine these 

patterns to create more complex ones. Deeper layers capture more complex patterns, requiring 

larger combinations of patterns. Although an increase in the number of filters does not always 

improve semantic segmentation performance, it is still preferred over increasing the number of 

pooling layers. Pooling layers increase the field of view but discard "where" information, making 

them unsuitable for pixel-accurate labeling, which is required for semantic segmentation. Pooling 

layers are better suited for tasks such as object recognition, where the presence of an object in an 

image needs to be detected. Therefore, this study evaluates the effect of increasing filters on the 

semantic segmentation task. Based on our assessment, it was determined that 1024 filters yielded 

optimal results for segmentation.  
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Figure 2. Image analysis of (a) computer generated FFT of TEM image of the SEI in a cycled Li 

metal anode: (b) detected FFT features using U-Net model trained with full (1024 x 1024 pixels) 

images and (c) circular integration technique on segmented image to obtain the (d) diffraction-like 

graph of the FFT image. Image analysis of (e) another computer generated FFT of TEM image of 

the SEI in a cycled Li metal anode: (f) model trained with full (1024 x 1024 pixels) images suffer 

from improper symmetry in segmentation (marked in dashed red) and merged features (marked in 

dashed purple). (g) circular integration technique on segmented image (h) failed peak detection in 

diffraction-like graph for low intensity features.  

 

The U-Net model, as described previously, was utilized to detect features in the FFT image (Fig. 

2(a)) and generate a corresponding labeled image with white markings indicating the detected 

features. The labeled FFT image was subsequently masked onto the original FFT image (Fig. 

2(b)), and circular integration (Fig. 2(c)) was applied to generate the diffraction-like graph (Fig. 

2(d)). An example of this process is illustrated in Fig. 2, where the FFT image obtained from a 

f) 

a) b) c) d) 

e) g) h) 
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TEM image of a Li metal anode was processed to obtain the diffraction-like graph. The Li (011) 

(2.42Å) and Li2O (111) (2.65Å) components were detected using the peak positions and the ICDD 

database (American Society for Testing and Materials (ASTM), 1941.). The segmentation model, 

U-Net, was trained using 1024 x 1024 pixels images. However, the model suffered from poor 

symmetry in some cases of the resultant FFT (Fig. 2(e)), as demonstrated in Fig. 2(f) with regions 

marked in red dots, and imprecise segmentation due to the detected features being merged, as 

shown in regions marked in blue dots. Moreover, the peak detection of crystalline components 

using circular integration (Fig. 2(g)) sometimes failed at very low intensity, as shown in Fig. 2(h), 

where the Li2O (022) component was not detected due to the low intensity of the feature. 

FFT half image training technique  

 

 

Figure 3. (a) Schematic of the usage of half FFT images for feature detection. Image analysis of 

(b) computer generated FFT of TEM image of the SEI in a cycled Li metal anode. (c) Model 

trained with half (1024 x 512 pixels) images preserves symmetry and produces clear distinct 

a) 

b) c) d) e) 
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features. (d) Individual features detected from the segmented image with mask for IFFT (e) Feature 

intensity graph generated from results of instance segmentation. 

Components 
d-spacing (Å) 

(Calculated) 

d-spacing (Å) 

(from 

GATAN) 
% Match 

Feature size 

(pixels) 

(IFFT mask) 

Pixel value 

count 

(a.u) 

Li (011) 2.41641 2.416 100% 20.03 28078 

Li
2
O (111) 2.62746 2.6528 99.04% 17.31 287173 

Li
2
O (022) 1.59336 1.593 100% 11.53 4601 

 

Table I. Tabulated results from the instance segmented image. 

 

To address the imprecise segmentation, the symmetry of the FFT image was utilized by dividing 

the image into two halves, using only half of the image for training, and reducing the training 

image size by half to 1024 x 1024 pixels. This novel technique, though exhibiting the possibility 

of overfitting, is observed to perform better than the model trained with 1024 x 1024 pixels (Fig. 

S10 – S12). To tackle the issue with low intensity peak detection, the watershed segmentation 

algorithm was employed for image segmentation, including instance segmentation. The algorithm 

detects the background and foreground using morphological operations such as opening and 

dilation and identifies the sure foreground using distance transform. The unknown area is 

identified, and markers are utilized to detect the exact boundaries of the objects (Kumar et al., 

2020). To obtain a complete FFT image, the half of the FFT image is first duplicated and then 

horizontally mirrored. The mirrored image is then rotated by 90 degrees (Fig. 3(a)). The challenge 

in processing the FFT image (Fig. 3(b)) using model trained with full FFT images (1024x1024 

pixels) was overcome by employing a model trained on half FFT images (1024x512 pixels) for 
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feature detection, as shown in Fig. 3(c).  Instance detection using watershed segmentation was 

employed to detect all features (Fig. 3(d)) and to obtain the intensity profile after masking (Fig. 

3(e)). Each feature detected was matched with a component from the database and averaged out 

to generate results. The components detected from the instance segmentation provide not only the 

exact position of the components detected, which agrees closely with the values generated from 

the GATAN Micrograph software, but also the size of the feature. This size information can be 

used to design masks of the appropriate size to prevent noise from the FFT from being included in 

the mask, and a more accurate and discrete intensity profile was obtained after masking (Table I). 

 

Figure 4. Intensity profiles for selected features in (a) computer generated FFT of TEM image of 

the SEI in a cycled Li metal anode. Line scans of three features compared with segmented images 

generated by (b) model trained with full (1024 x 1024 pixels) images and (c) model trained with 

half images (1024 x 512 pixels). (d-f) Intensity variation for each feature in the raw image (solid 

a) b) c) 

d) e) f) 
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black line), model trained with full (1024 x 1024 pixels) images (dashed), and model trained with 

half images (1024 x 512 pixels) (starred-solid). 

 

The features detected by the model trained with full size (1024x1024 pixels) images tend to 

produce features at least 30% bigger than the model trained with half-size images (Fig. 4 (a-c)). 

The intensity profile shows the robustness of the new model trained with half images (Fig. 4 (d-

f)). The size of the segmented feature is important as a larger sized feature makes the distinct 

features more prone to merging, resulting in inaccurate IFFT generation from the masking. Given 

the robust model, this tool can be used for high throughput TEM image analysis. The relative 

intensity distribution of the components and the mapping of the components can be achieved with 

the tool. 

LiF beam damage analysis 

The investigation of the SEI in lithium-ion batteries requires the use of TEM for atomic resolution 

imaging. Electron beam and environmental factors are known to cause irradiation damage in the 

SEI. To avoid such damage, the lithium sample must be maintained at low temperatures, but even 

then, the dose rate and exposure time can impact the sample's decomposition products and rate 

(Cheng et al., 2022). The present study aims to analyze the beam damage of lithium fluoride (LiF), 

which is a commonly occurring SEI component, using a high-volume TEM image processing tool. 

To this end, we obtained data on LiF beam damage from a study that investigated the effects of 

beam damage on the imaging of SEI components in a cycled lithium metal anode, while 

considering the dose rate and exposure time. In our study, we analyze the LiF particle's images at 

cryogenic and room temperatures, and with various dose rates ranging from 50 e A-2 s-1 to 1000 e 
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A-2 s-1 using the developed TEM processing methodology. The TEM images are obtained by the 

Mel-Build holder using an optimized workflow. 

 

 

a) 

b) 

c) 

d) 
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Figure 5. (a) Intensity distribution of detected components over 100 frames of LiF at electron 

dosage of 1000 e A-2 s-1 and cryo temperature. TEM image slice and program generated IFFT 

mapping at the initial detection of (d) LiF (002) – after 2.46 s beam exposure, (b) Li (011) – after 

14.76 s beam exposure, and (c) Li (002) – after 54.12 s of beam exposure. 

A video was recorded during TEM imaging to monitor the beam damage of LiF particles. The 

Velox software was used to save the resulting video file in the mrc format, which contained 100 

slices corresponding to 2.46 seconds of electron beam exposure each. The mrc python library 

(PyPi.org, 2022) was utilized to extract image data from the file, but since it was unable to retrieve 

the pixel size information, this information was manually entered along with the mrc file for 

subsequent processing. Batch file processing was employed for the automatic analysis of the 

components present in the sample, which were mapped using feature extraction from the FFT 

image. The intensity of each component was recorded and compared to its corresponding intensity 

in the subsequent slice to track the evolution of the components during beam damage (Fig. 5 (a)). 

This allows for effective assessment of the beam damage of LiF particles during TEM imaging. 

The analysis of the intensity distribution of the detected components over 100 frames of beam 

exposure of LiF (Fig. 5 (a)) reveals that the Li (011) phase diffuses out of the LiF first at 6th frame 

or after 14.76 s of beam exposure (Fig. 5 (b)). The Li (011) facet is the most commonly observed 

facet during nucleation, despite the slightly lower surface energy of Li (002) facet which is 

observed at 22nd frame or after 54.12 s of beam exposure (Fig. 5 (c)). This is due to the lower 

thermodynamic overpotential required to obtain Li (011) facet, which overpowers the surface 

energy effect (Nagy et al., 2019). The intensity of the Li (011) phase decreases and starts to 

increase midframe due to the appearance of underlying LiF particles. Li2O (111) and Li2CO3 (002) 

phases are also observed, which could be attributed to the surrounding environment of the TEM 
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chamber (Liang et al., 2020). LiF (002) is dominant over LiF (111) phase because it has a lower 

surface energy and a higher binding energy (Chattopadhyay et al., 2012). LiF (111) is observed at 

the initial frames of the beam exposure (Fig. S13) and fades away as Li (011) phase grows. There 

is no information provided in literature that directly answers whether using high dose rates during 

TEM can convert one phase with lower surface energy to one with higher surface energy. 

However, it is known that high dose rates can cause radiation damage to the sample, which can 

affect the crystal structure and properties of the material being studied. Therefore, it is possible 

that high dose rates during TEM could affect the surface energy of a material, but further research 

is needed to determine the exact mechanism and conditions under which this could occur. The 

consistent intensity of the (002) peak in LiF is observed to be a result of the presence of newly 

formed LiF particles on the bottom surface after the degradation of the topmost LiF layer due to 

beam damage. This observation is corroborated by the increase in the intensity of the Li (011) 

phase, which subsequently decreases but then increases again. The increase in the intensity of the 

Li (011) phase is indicative of the formation of Li (011) due to the degradation and resurfacing of 

LiF particles. The degradation of LiF into Li is observed to be very limited at low dose rate and at 

cryo temperature (Fig. S13). A Python-based GUI tool has been designed and developed for future 

use and broader distribution. This intuitive interface offers a potential advantage over current state-

of-the-art analysis programs, particularly when dealing with large datasets. The GUI aims to 

streamline the analysis workflow, making the program's advanced capabilities accessible to a 

wider range of users and facilitating efficient processing of complex TEM data (Fig. S14). 

◼ CONCLUSIONS 

This paper introduces a novel deep learning-based framework for identifying and evaluating the 

phases present in TEM images of the SEI. The framework utilizes the FFT patterns of the TEM 
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images to analyze the feature positions and determine the SEI components. The proposed method 

also incorporates techniques to handle high-resolution images and exploit the symmetry of the FFT 

patterns for better model performance. The framework's effectiveness is further improved by 

introducing additional training data. Additionally, a comprehensive analysis of the TEM images 

through intensity profiling and component mapping provides valuable insights into the SEI 

component evolution during imaging. 

In future studies, we propose utilizing the diffraction pattern generated from high frame rate TEM 

image patches for more detailed and accurate analysis. This alternative approach is superior to the 

sliding window technique for generating FFT patterns from TEM images as the latter may lack 

clarity and clear features. Furthermore, our proposed deep learning model can be applied to analyze 

not only the SEI components of Li metal anodes, but also other composite systems involving 

periodic components (Na metal anodes, Si anodes, etc.) provided an appropriate database with the 

respective compounds is used. The developed workflow can be further improved by integrating it 

for operando detection and mapping of the phases, thereby enabling the analysis of component 

evolution during TEM imaging.  
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The Supplementary Information is available free of charge. 

The Supplementary Information contains details of the optimization of the model. 
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Figure S1.  Schematic of the data generation for training the model. 
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a) b) c) 

d) e) f) 

Figure S2.  (a) Initial FFT image obtained from TEM using python. (b) De-noised FFT image. (c) 

Enhanced FFT image ready for further analysis. (d-f) Comparison of python generated FFT image (1) 

with GATAN generated FFT image (2) (Scale bar:1/10 nm-1).  
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Figure S3.  (a-c) TEM images (scale bar: 10 nm) of SEI of cycled Li metal anodes. (d-f) FFT 

images generated for corresponding TEM images. (g-i) Diffraction-like graph generated using 

circular reintegration method. (j) Tabulated results obtained by manually identifying the peaks and 

compared with d-spacing obtained from GATAN software. 

a) b) c) 

d) e) f) 

g) h) i) 

j) 
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Figure S4.  Schematic representation of the UNet-type architecture used on 1024x1024 pixel and 

1024x512 pixel images. 
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Figure S5.  1968 images based training of 256 x 256 pixels images show better performance (Dice 

coefficient) than 500 images based training. 
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  Figure S6.  (a-b) Generated FFT of the TEM images of SEI of cycled Li metal anodes (scale bar: 

1/10nm-1). (c-d) Segmentation images generated using 500 FFT images. (e-f) Segmentation images 

generated using 1968 FFT images. 
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Figure S7.  (a-b) Generated FFT of the TEM images of SEI of cycled Li metal anodes (Scale bar: 1/10 

nm-1). (c-d) Segmentation images generated using 256 x 256 pixels images. (e-f) Segmentation images 

generated using 512 x 512 pixels images. 
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Figure S8.  Training vs Validation loss of the model trained with (a) 1024 x 512 pixels and (b) 1024 x 

1024 pixels. 

a) b) 
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Figure S9.  (a-e) Generated FFT of the TEM images of SEI of cycled Li metal anodes (scale bar: 1/10 

nm-1). (f-j) Segmentation images generated using corresponding 512x512 pixel TEM images. (k-o) 

Segmentation images generated using corresponding 1024x1024 pixel TEM images. 



 
 

11 
 

  

Model Name Image size 

Validation Dice 

coefficient 

Test Dice 

Coefficient 

U-Net 256 x 256 pixels 0.8944 0.6048 

U-Net 1024 x 1024 pixels 0.9459 0.7557 

Table S1.  Performance metrics comparing the model performance with varying image resolution and 

1024 filters 
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Model Evaluation Metrics 

A test data set of 9 unseen FFT images (Test data) and their corresponding ground truth were used 

for gauging and comparing the metrics of the model. The ground truth was prepared in the similar 

fashion as mentioned in the data preparation section.  The validation data used and the results 

obtained are also available in the Github repo. 

Comparative Analysis of Training and Validation Loss: 

The training loss vs. validation loss curve reveals a notable difference in behavior between the two 

models. The model trained on 1024 x 512 pixels images exhibits a slightly larger gap between 

training and validation loss compared to the model trained on 1024 x 1024 pixels images. This 

observation suggests a potential for overfitting in the model trained on smaller images.  

 

 

 

 

 

 

Figure S10.  Confusion matrix of the validation results obtained from models trained with (a) 1024 x 

1024 pixels images and (b) 1024 x 512 pixels images 

a) b) 
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Comparative Analysis of Confusion Matrices: 

The confusion matrix reveals a higher incidence of false positives in the 1024 x 1024 pixels 

images. This could potentially complicate Inverse Fast Fourier Transform (IFFT) mapping due to 

larger feature sizes. Although the confusion matrix for the 1024 x 512 pixels images is based on 

half the number of pixels, doubling the label counts still results in lower false positives (2 * 2483 

= 4969 < 7086) for this model. These validation results align with the findings presented in Figure 

4 of the manuscript. The results used for the generation of the confusion matrix was not threshold 

applied. The pixel values range of the output range from 0-1. 

The model trained with 1024 x 512 pixels images have more false negatives (2 * 3 = 6) compared 

to the model trained with 1024 x 1024 pixels images, indicating a potential overfitting which aligns 

with the observation from training loss vs validation loss curve.  

 

 

 

 

Figure S11.  Confusion matrix of the validation results obtained from models trained with (a) 1024 x 

512 pixels images and (b) 1024 x 1024 pixels images 

a) b) 
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Comparative Analysis of Dice scores distribution: 

The image below presents the validation results without applying a threshold, with pixel values 

ranging from 0 to 1. Notably, the model trained on 1024 x 512 pixels images demonstrates 

consistently higher Dice coefficients than the model trained on 1024 x 1024 pixels images. This 

observation suggests that the reduced image dimensions may be advantageous for improving the 

model's segmentation performance and accuracy. 

 

 

 

 

The model trained on 1024 x 512 pixels images demonstrates consistently higher Dice 

coefficients than the model trained on 1024 x 1024 pixels images. This observation suggests 

that the reduced image dimensions may be advantageous for improving the model's 

segmentation performance and accuracy. 

 

 

 

 

Figure S12.  Dice score distribution of the model trained with (a) 1024 x 1024 pixels (b) 1024 x 512 

pixels 

a) b) 
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Figure S13.  Intensity profiling of analyzed TEM images of LiF at cryo temperature at dose rate 

of (a) 50 e A-2 s-1 (b) 200 e A-2 s-1, and at room temperature at dose rate of (c) 50 e A-2 s-1. (d) 200 

e A-2 s-1  

a) b) 

c) d) 
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◼ GUI DEVELOPMENT FOR AUTOMATED TEM ANALYSIS 

The creation of user-friendly interfaces is increasingly important in scientific software, especially 

when dealing with non-technical users. Tkinter, a popular Python library for GUI development, 

was utilized to create a GUI interface for automated TEM analysis in this study. The interface is 

designed to process TEM images and present the output in a results window. The processed images 

are displayed under the “SAMPLE NAME” column, and when a processed image is selected, the 

corresponding TEM image is displayed along with the list of detected components under the 

“COMPONENTS LIST” column. Each component in the list can be selected to map the region of 

the component on the TEM image and provide information about the percentage match with the 

database. This interface is expected to greatly simplify and expedite the analysis of TEM images 

by providing easy navigation and interactive visualizations. We employ the "multiprocessing" 

library to undertake the concurrent processing of multiple files. By accepting a parameter 

encompassing a multitude of file names, we utilize asynchronous parallel processing to expedite 

the execution of said files. 

The developed tool offers several potential advantages over current state-of-the-art analysis 

programs, particularly when applied to large datasets: 

Efficient Batch Processing of TEM Images: 

The developed program significantly expedites the analysis of large TEM datasets. It can batch 

process up to 100 images within 30 minutes, a substantial improvement compared to manual 

processing using GATAN software, which typically takes around 5 minutes per image. This 

manual approach can become even more time-consuming depending on the complexity of the FFT 

images and the number of features to be identified. This program thus offers a valuable tool for 
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researchers dealing with high-volume TEM data, accelerating their analysis workflow and 

enabling more efficient extraction of critical information. 

 

Precise and Automated Identification of Periodic Components: 

The developed program introduces a novel capability for automatically identifying periodic 

components in TEM images. By referencing a user-defined database, it assigns the nearest d-

spacing material to each detected component in the FFT. This functionality surpasses the 

capabilities of manual analysis software like GATAN, which lacks automated identification. 

Furthermore, the high accuracy of the program in detecting periodic components is clearly 

demonstrated in Table 1, highlighting its potential to streamline and enhance the precision of TEM 

analysis workflows. 

Unique Intensity Distribution Profiling: 

The developed program introduces a novel and powerful feature for analyzing the evolution of 

periodic components in TEM images. It generates an intensity distribution profile (Fig. 5(a)) (Fig. 

S13) by tracking the intensity of specific features across a series of image slices. This unique 

capability is not available in any existing analysis software and offers valuable insights into 

dynamic processes, such as beam damage in LiF samples as demonstrated in this work. This 

feature is particularly valuable for analyzing in-situ experiments, where large datasets need to be 

efficiently processed and interpreted. 
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Figure S14.  (a) TEM Processing GUI Tool start menu. (b) TEM Results window displaying 

corresponding components, component mapping on the TEM image. 


