

All Solid-State Batteries Based on

Sodium Electrochemistry

Y. Shirley Meng Laboratory for Energy Storage & Conversion (LECS) The University of Chicago/UC San Diego **Argonne Collaborative Center for Energy Storage Sciences (ACCESS)**

Disclosure – I am a co-founder of UNIGRID a sodium battery startup

Na vs Li Materials Sustainability

US Energy Storage : Scale

1) Electrical Grid

- Per capita 12000 kWh / year
- 400 tera-watt hours if just 10% storage
 → 60 million tons of Li Needed

2) Vehicles

- 17 million / year, if all EVs
- 0.85 tera-watt hours
 → 0.13 million tons of Li Needed

Abundant Sodium in the U.S. is needed to accelerate energy transition

Energy Density Road Map

Li Solid-State \$\$ Si Sqlid-State <mark>→ \$80/kW</mark>h

1000

Avenues to Increase the Energy Density and Lifetime of NIBs

Cathodes:

- Ni, Co-free
- understand the reaction mechanisms
- Interface interactions

Anodes:

- Electrolyte optimization
- Interface interactions
- Carbon-based materials

Energy Storage and Conversio

H. S. Hirsh et al., Adv. Energy Mater., 10, 1–8 (2020).

4

JMT, Joule 2020

Fluoride-Rich Solid-Electrolyte-Interface Enabling Stable Sodium Metal Batteries in High-Safe Electrolytes <u>https://doi.org/10.1002/adfm.202103522</u>, Advanced Functional Materials Volume31, Issue30 (2021)

Hard Carbon (HC)-Anode Material for NIBs

	Na Metal	НС	Graphite	TiO ₂	Sn
Low V	\checkmark	\checkmark	ok	ok	ok
High cap.	\checkmark	\checkmark	×	ok	\checkmark
High ret.	×	\checkmark	\checkmark	×	ok
High CE	X	(~)	\checkmark	ok	ok

for liquid NIB full cells

- low voltage \rightarrow near zero
- high capacity $\rightarrow \sim 300 \text{ mAh/g}$
- good retention

Problems with HC

- low first CE
 - Na trapped in bulk
 - Na used in SEI formation
- poor rate capability
 - slow plateau (de)sodiation processes
 - resistance from SEI

- HC is the most promising anode material

G. Deysher ... and Y.S. Meng, ACS Appl. Mater. Interfaces 2022, 14, 47706–47715

Data from ANL BatPac

*Prevailing Li₂S based SSE projections

LIB	Unit Price / kg	Material Cost \$/kWh	Li-ASSB	Unit Price / kg	Material Cost \$/kWh	Na-ASSB	Unit Price / kg	Material Cost \$/kWh
Graphite	12.50	10.23	Li-Si Alloy	2.10	0.19	Na-Sn Alloy	16.10	11.50
Electrolyte	12.50	10.13	SSE-Sep	*50.00	12.06	SSE-Sep	0.28	0.09
Separator	160.00	24.00	SSE-Cat	*50.00	14.71	SSE-Cat	1.73	0.49
Aluminum	7.41	2.09	Aluminum	7.41	0.98	Aluminum	7.41	2.38
Copper	13.45	12.55	Copper	13.45	5.90	Copper	Not Required	
Cathode	20.00	30.03	Cathode	17.00	25.01	Cathode	1.51	4.89
Manufacturing	35% of Ove	erall Costs	Manufacturing	25% of Ove	erall Costs	Manufacturing	50% of Ov	erall Costs
Total	\$135/	kWh	Total	<\$80/	kWh	Total	<mark><\$40/k</mark> Wh	n (Target)

<mark>\$40 per kWh</mark>.

BATTERIES

CATL Reveals Sodium-Ion Battery With 160 Wh/kg **Energy Density**

According to Chinese media sources, we can expect the first-generation cells to cost \$77 per kWh. With volume production, that figure could drop to below

First Demonstration of Li_3YCI_6 in 2018

 \succ Reduced crystallinity after ball milling \rightarrow More isotropic Li⁺ diffusion \succ Highly conductive LYC \rightarrow improved ICE with bare-LCO \rightarrow low interfacial impedance

1. Asano, T. et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Advanced Materials (2018).

Na-ion Conducting Halides: Na₃YCl₆

Dr. Erik Wu **UNIGRID CTO**

Wu, E. et al., Nat Commun. 12, 1256 (2021).

Aliovalent Doping of NYC: $Na_{3-x}Y_{1-x}Zr_{x}Cl_{6}$

NYZC0.75: Influence of Crystallinity

- Computation suggests amorphous NYZC has higher ionic conductivity
- Ball milling efficient at reducing the crystallinity of NYZC0.75
- Ball-milling: $\sigma_i \times 5$ at RT

Wu, E. et al., Nat Commun. 12, 1256 (2021).

Composition and Crystallinity

NaCl-YCl₃-ZrCl₄ Compositions

amorphous products

Phil Ridley

Na-Y-Zr-Cl Solid Electrolyte Microstructure

- \blacktriangleright Particle sizes range from ~ 1 3 µm, some < 1 µm
- Samples possess very fine, or nanocrystalline, domains (< 100 nm)

Sebti, E. et al. Journal of Materials Chemistry A 10, 21565–21578 (2022).

 \succ

x in Na_{2.25 - x}Y_{0.25}Zr_{0.75}Cl_{6 - x}

Ionic Conductivity and Activation Energy

- \blacktriangleright Low activation energies (340 370 meV) observed in all samples
- \succ x = 1.625 composition shows optimal balancing between Na⁺ per unit volume and their mobility

Crystallinity and Ionic Conductivity

^{*}asterisk corresponds to NaCl

- Heat-treatment induced crystallization of both compositions and redistribution of local Na environments
- Consequently, lower ionic conductivity and increased activation energy

Room Temperature Battery Performance

Submitted, under review (archived): <u>10.26434/chemrxiv-2022-x7llq</u>)

➤ Higher conductivity → improved capacity utilization at room temperature

Owed to reduced crystallinity and occupancy of

Anode Selection \rightarrow Anode-Free Game Changing for Na ASSB

"Anode-Free": Na/Li metal is directly deposited onto the current collector surface

Anode-Free can achieve significantly higher energy density Zero weight and volume Lowest reduction potential \rightarrow highest cell voltage

Patent Pending

Anode-Free Solid-State Sodium S³Batteries

Cell architecture criteria to realize an anode-free ASSB

Deysher, G., Jang, J., Meng, Y.S., 2023. An Anode-Free Sodium All-Solid-State Battery. Ongoing publication: (submitted) Archived : doi.org/10.26434/chemrxiv-2023-tkcd9

Grayson Deysher

Ability to deposit 60um Dense Sodium !!!

NSF 2010-now Sodium Battery

Sodium Anode-Free Solid-State Full Cell

Need to enable full-cell cycling (NaCrO₂ cathode)

- High Coulombic efficiency and stable cycling
- Significantly improved compared to traditional foil current collector

Deysher, G., Jang, J., Meng, Y.S., 2023. An Anode-Free Sodium All-Solid-State Battery. (submitted) Ongoing publication: Archived : doi.org/10.26434/chemrxiv-2023-tkcd9

Future Outlook-Solid State Battery Recycling

Processing

8

9

Key Considerations:

- \checkmark Reduced safety risks
- \checkmark Potential to recover >99% materials of a battery
- \checkmark No toxic chemicals used
- ✓ Low energy processes

Solid Electrolyte

Liquid Electrolyte

Cell Recycling

Cell Recycling

 \checkmark Regenerated materials used directly in new batteries

2

3

Energy Consumption / MJ kg⁻¹ cell

Tan, D. et al., MRS Energy & Sustainability 7, E23 (2020).

Na Battery will be the next TW-hr scalable technology!

Li	
6.94	23
0.76	1.
-3.04	—
180.5	97
5000	15
0.6	0.4
0.534	0.9
84.8	14
1.84	4.
3829	11
0.0065	2.'
70% in South America	ev
	Li 6.94 0.76 -3.04 180.5 5000 0.6 0.534 84.8 1.84 3829 0.0065 70% in South America

- Na 3.00 .02 .2.71 7.7 50 .4 .97 42
- 44
- 165
- .74
- verywhere

Collaborators and Funding

Team Members:

Dr. Minghao Zhang, Dr. Jean-Marie Doux, Dr. Erik Wu, Dr. Abhik Banerjee, Dr. Darren Tan, Dr. Hayley S. Hirsh

Collaborators:

Dr. Shyue Ping Ong, Dr. Zheng Chen (UCSD) Dr. Anatoly Shabalin, Dr. Oleg Shpyrko (UCSD) Dr. Andrej Singer (Cornell University) Dr. Raphaële Clément (UCSB)

University Research Program Since 2019

National Science **DMREF (2014-2016) PFI (2020- now)** Foundation

