

Scaling-Up High Energy Density Solid-State Batteries

Y. Shirley Meng

The University of Chicago & University of California San Diego Argonne Collaborative Center for Energy Storage Science

All Solid-State Batteries – Platform Technology

High-Energy-Density and Safe Batteries

LGES – FRL Team Members

From Atom to System

Shpyrko Ong Kim Clement Meng Liu Chen Computation **Characterization Devices** Scalable Recycling **Modeling Novel Materials** Processing **Prototyping** Safety

ustainable Power and

> Energy Center

Scope & Areas of Collaboration

	1. Materials	Anode & Cathode strategySolid Electrolytes	
--	--------------	---	--

 2. Electrodes & Cells Provide Processing Fabrication & Pouch Prototyping 	
--	--

3 Characterization	Degradation/Interface Characterization	
5. Characterization	Electrochemical Diagnosis and Prognosis	

 4. Modeling • Thermo-Mechanical-Electrochemical Modeling • Computational Materials Discovery Database 	P		
---	---	--	--

Interfacial Challenges and Strategies

- Need an SSE that is stable to 4V (especially with carbon!)
- Need a compliant SSE that can provide intimate cathode/SSE contact (i.e. Li₆PS₅CI)

Tan et al. Nature Nanotechnology. Vol 15, 170-180 (2020)

 Chlorides are a good candidate for their oxidative stability and potential low-cost (i.e., Li₂ZrCl₆)

Why do We Choose Li₆PS₅Cl – Metric Ton Quantity

USA Supplier 2:

Japan Supplier 1

USA Supplier 1:

Necessity of Low Dose, DED and Special Holder

LESC

Li₀PS₅CI @ Cryo Α Li₆PS₅CI @ Cryo В Li₆PS₅CI 3 nm-1 [0-1 1] Direct electron detector Detectors: Ceta camera High mag electron dosage High mag electron dosage rate: ~4.8 e A⁻²s⁻¹ * 10 s rate: ~5.0 e A⁻²s⁻¹ * 10 s (LON ALAA) Li₆PS₅Cl С Li K i-PS-C Li metal Li₂S Li₂S Li₆PS₅CI Li metal matrix 70 3 # Energy Loss (eV) LiePSeC Li K Li₂S/Li metal matrix Li metal Li₂S Li₂S i metal matri-50 70 Energy Loss (eV)

Unpublished data from Meng group – to be submitted in 2023

Magnification: 150 kx; Dosage rate: ~6.3 e A⁻²s⁻¹ * 10 s

 LPSCI is super beam sensitive(melting and bubbling) even at Cryo temperature (< 10 e A⁻²s⁻¹, direct electron detector is required)!

 Cryo EM will unlock the understanding of Solid-State
 Electrolytes, particularly
 glassy type

Supported by CRADA and LDRD

The PicoProbe is an advanced next generation analytical electron microscope which is the results of a multi-year **CRADA** at Argonne. This monochromated, aberration corrected, probe forming analytical electron microscope will harken the next generation of complementary characterization resource. It facilitates state-of-the-art correlative studies of the morphology, crystallography, elemental, chemical and electronic structure composition of soft and hard matter. Having the ability to operate between 30 and 300 keV, has probe sizes as small as 50 picometers. Combined with the worlds highest sensitivity detector for x-ray spectroscopy and the ZTwin lens, designed by Argonne, the Picoprobe enables unprecedented sensitivity and resolution for the characterization of hard and soft matter.

https://www.aps.anl.gov/AAEM/PicoProbe

Defining Cell Configuration

LGES-UCSD Frontier Research Laboratory

Requirements:	Pellet Type	Pouch Type
SSE Thickness	~ 700 μm	< 100 µm
Areal Loading	< 2 mAh cm ⁻²	4-6 mAh cm ⁻²
Cell Size	< 1 cm ²	> 10 cm ²
Stack Pressure	~ 50 MPa	< 5 MPa
Layers	1	≥1

► LPSCI is dry room compatible → Ready for pouch cells
 ► Setting key parameters for pouch demonstration based on μSi
 | LPSCI | NCM811

Unpublished data from Meng group

D. Tan, J. Jang and Y.S. Meng Joule 2022

https://doi.org/10.1016/j.joule.2022.07.002

Dr. Darren Tan

Dr. Jihyun Jang

Funded by

LGES-UCSD Frontier Research Laboratory

Slurry-based Method VS Dry Process

Remaining Challenges

Li2S price needs to come down by 5X -10X SSE particle size control must be done

Dry room compatibility - yes! Dry processing – at scale!!!

Pressure reduction from 100MPa – 50MPa – 5MPa Design SSB component and architecture

Dry Room Compatibility Resolved

Y. Chen, M. A. T. Marple, D. H. S. Tan, S. Ham, B. Sayahpour, W. Li, H. Yang, J. B. Lee, H. J. Hah, E. A. Wu, J. Doux, J. Jang, P. Ridley, A. Cronk, G. Deysher, Z. Chen and Y. S. Meng, "Investigating Dry Room Compatibility of Sulfide Solid-State Electrolytes for Scalable Manufacturing", J. Mater. Chem. A, 2022, **10**, 7155 – 7164

Fig. 1 Schematic of the chemical reactions that occur when Li₆PS₅Cl is exposed to ambient air and during the subsequent heat treatment process.

Stack Pressure Effect on Li Metal Anode

Doux, J.-M.; Nguyen, H.; Meng, Y. S. et al., Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 10, 1903253, 2020.

O Reported Critical Current Densities of Li Metal ASSB

Ham and Meng et al. Energy Storage Material. 2023

- Critical current density: Symmetric > Full
- Near room temperature full cell: < 1 mA/cm²
- Pressure change: Symmetric < Full

Li Metal Symmetric Cell: Cell Fabrication/Contact

Ham and Meng et al. Energy Storage Material. 2023

Li Metal Symmetric Cell Fabrication & Cycling Process

Pressure Monitoring of Li Metal Symmetric Cell

- Three different pressures applied during the fabrication/cycling process
 - 1. SSE compaction pressure = 370 MPa
 - 2. Contact pressure = 25 MPa
 - 3. Cycling pressure = 5 MPa

- Contact Pressure: Rapid drop during initial 30 min → Gradual decrease afterward
- Cycling (plating/stripping):
 No significant pressure change

Li Metal Symmetric cell: CCD/Failure

Ham and Meng et al. Energy Storage Material. 2023

min Cell short (1 min) 40 30 min 0.88 mA/cm² 20 Voltage (mV) -20 Cell short (30 min), -40 2.15 mA/cm² 0 10 20 30 40 50 60 Time (h)

Ramping Test of Different Contact Time Cells

• Ramping test for CCDs of symmetric cells

• Higher CCD in 30 min contact hold sample

Ramping Test of Different Contact Time Cells

- CCD trends depending on contact hold time
- CCD increase until 30 min contact, decrease afterwards

Cryo-FIB/SEM : Direct observation of Li/SSE interface

Li Metal Full Cell: Pressure Dependence

Ham and Meng et al. Energy Storage Material. 2023

Full Cell: Fixed Gap vs. Constant Pressure

Long-term Cycling of Constant Pressure Setup

Ham and Meng et al. Energy Storage Material. 2023

Si Has a Chance to Reduce Volume Changes

Volume expansion in full cell

 Pristine		Charged		Discharged	
NCM811/SSE	40 µm	NCM811/SSE	38 µm	NCM811/SSE	40 µm
SSE	50 µm 4 mAh/cm ²	SSE	50 µm 4 mAh/cm ²	SSE	50 µm
 Li metal	20 µm	Li metal		Li metal	20 µm

 Pristine			Charged			Discharged	
NCM811/SSE	40 µm		NCM811/SSE	38 µm		NCM811/SSE	40 µm
SSE	50 µm	6 mAh/cm ²	SSE	50 µm	4 mAh/cm ²	SSE	50 µm
 Si Anode	20 µm		Si Lix Alloy	40 µm		SiLiy Alloy	<u>30 µm</u>

Si Anode Synergy in Solid-State Batteries

Enable 99.9% Si anode without carbon and solid electrolyte

- Inventory loss to the passivating SEI remained relatively constant
- Realized Si cycling >500 cycles

However, it is paramount to *improve the initial Coulombic efficiency* (~76%) to achieve high energy density all-solid-state batteries

Electrochemical performance

Dr. Darren Tan

Porosity changes during cycling

LG FRL - Anode Strategies

□ 1st Year Achievement

LGES-UCSD Frontier Research Laboratory

- Enhanced ICE
- Higher D_{Li} and stable cycling

So Yeon Ham et. al. To be Submitted 2023

Patent Pending

LGES-UCSD Frontier Research Laboratory

So Yeon Ham

Prelithiation of Si – Unlock 10mAh/cm2 Capacity

Higher LCO loading cells by stacking dry films paired with 5 mg of lithiated Si (Li₁Si)
Similar ICE for all loadings

6

Capacity / mAh cm⁻²

10

12

Higher polarization for high loading but still achieved 140 mAh/g
5 mg lithiated Si enough for areal capacity of 10 mAh cm⁻² discharge capacity

Anode Selection → Anode-Free Game Changing for Na ASSB

• "Anode-Free": Na/Li metal is directly deposited onto the current collector surface

- Anode-Free can achieve significantly higher energy density
 - Zero weight and volume
 - Lowest reduction potential \rightarrow highest cell voltage

Sustainability

Improved Room Temperature NaASSB

- Amorphous electrolyte \rightarrow *Higher conductivity* \rightarrow **improved capacity utilization** at room temperature
- Owed to reduced crystallinity -> free
 volume & preferential population of
 prismatic Na environments

Patent Pending

LESC Attention and Conversion

Anode-Free Solid-State Sodium S³Batteries

Cell architecture criteria to realize an anode-free ASSB

1

Acknowledgements First

DOE VTO E Li Metal and Cathode Interfaces

DOE BES 2 LiPON SSB and Cryo EM

C LG Energy Solution

LGES-UCSD Frontier Research Laboratory

Workflow design for battery Next-gen Cryo EM for Energy and Quantum materials Falcon Camera etc.

Thermo Fisher

Battery Prototyping

UC IRVINE MATERIALS RESEARCH INSTITUTE

Solid State Battery Team at LESC group