

Understanding the Interphasial Phenomena in ALL SOLID State Batteries

Y. Shirley Meng

University of Chicago University of California San Diego

LIB will dominate, why bother with All Solid-State Battery?

What We have Achieved

- Tripled the Energy Density 18650 Cylindrical Cell 1Ah → 3Ah
- Lowered the Cost 10 Times 2005 (2000\$/kWh) Today (<150\$/kWh)
- Extended Cycle Life 300 cycles to 3000 cycles deep DOD
- >1TWh/yr worldwide production capacity will 10X Soon
- Recycling and Reuse of LiB Happening!!!

Stable Cycling of 350 Wh/kg Li/NMC622 Pouch Cell

- Prototyping Li metal pouch cells demonstrate stable cycling: >550 cycles with 80% capacity retention (still under testing). Pouch cells are 2Ah in size and they can be produced by batches.
- A great platform to accelerate Batt500 innovation: electrode architecture, electrolyte, cell design, cell balance etc.
- Prototyping pouch cells were also shipped out for independent 3rd party validation.
- SAFETY UNKNOWN Risky for Startups to commercialize the technology at this point

All solid-state batteries – Platform Technology

High-Energy-Density and Safe Batteries

A Platform Technology Enabled by Green Manufacturing

- Thin electrolyte film <30um
- High loading cathode >5mAh/cm2
- Stackable design bipolar design
- Dry processing green manufacturing

Series (bi-polar) stacking:

- ➢ Reduces inactive materials components → increase energy density
- Higher overall voltage per cell

 Enhanced safety and abuse tolerance

When will All Solid-State Battery Will be Commercialized ?

Polymer based ones are already there!

A Brief (Long) History of LiPON

LiPON Enables Remarkable Battery Cyclability

The **chemistry** of the electrode/electrolyte interfaces are more important than the **mesostructure**

D. Cheng, T, A, Wynn, Y. S. Meng, et al., Joule, (2020), 4, 1–17.

Cryo-EM unravels the stable cathode electrolyte interphase UESC

Most regions along LNMO/LiPON interface after >500 cycles shows no signs of cracking, delamination or decomposition.

R. Shimizu, D. Cheng, Y. S. Meng et al. Adv. Energy Mater. 2022, 2201119

A unique form of LiPON thin film

Free-standing LiPON film

Fully dense solid-state electrolyte

Consistent Li/electron transport characteristic as LiPON

From Basic Science to Breakthrough Innovation

Enabled Free Standing LiPON Film Pressure free dense Li plating

Thin Film Battery (Ensurge) – Anode Free Micro-Battery

Unpublished data from Meng group

Please contact me if you would like an archived copy shirleymeng@uchicago.edu

Anode Selection \rightarrow Anode-Free Game Changing for Na ASSB

• "Anode-Free": Na/Li metal is directly deposited onto the current collector surface

- Anode-Free can achieve significantly higher energy density
 - Zero weight and volume
 - Lowest reduction potential \rightarrow highest cell voltage

Stack pressure effect on Li metal anode

Conclusion / Future work

Volume expansion in full cell

 Pristine		Charged			Discharged	
NCM811/SSE	40 µm	NCM811/SSE	38 µm		NCM811/SSE	40 µm
SSE	50 µm 4 mAh/cm ²	SSE	50 µm	4 mAh/cm ²	SSE	50 µm
 Li metal	20 µm	Li metal	40 µm		Li metal	20 µm

 Pristine			Charged			Discharged	
NCM811/SSE	40 µm		NCM811/SSE	38 µm		NCM811/SSE	40 µm
SSE	50 µm	6 mAh/cm ²	SSE	50 µm	4 mAh/cm ²	SSE	50 µm
 Si Anode	20 µm		Si Lix Alloy	40 ⁻ µm		SiLiy Alloy	<u>30 µm</u>

→ Don't run away from the challenge! It is an Opportunity

Reported Critical Current Densities of Li Metal ASSB

- Critical current density: Symmetric > Full
- Near room temperature full cell: < 1 mA/cm²
- Pressure change: Symmetric < Full

Li Metal Symmetric Cell: Cell Fabrication/Contact

Li Metal Symmetric Cell Fabrication & Cycling Process

- Three different pressures applied during the fabrication/cycling process
 - 1. SSE compaction pressure = 370 MPa
 - 2. Contact pressure = 25 MPa
 - 3. Cycling pressure = 5 MPa

Pressure Monitoring of Li Metal Symmetric Cell

- Contact Pressure: Rapid drop during initial 30 min → Gradual decrease afterward
- Cycling (plating/stripping): No significant pressure change

Li Metal Symmetric cell: CCD/Failure

Ramping Test of Different Contact Time Cells

• Ramping test for CCDs of symmetric cells

• Higher CCD in 30 min contact hold sample

Ramping Test of Different Contact Time Cells

- CCD trends depending on contact hold time
- CCD increase until 30 min contact, decrease afterwards

Cryo-FIB/SEM : Direct observation of Li/SSE interface

Li Metal Full Cell: Pressure Dependence

Full Cell: Fixed Gap vs. Constant Pressure

Long-term Cycling of Constant Pressure Setup

- 0.5 mA/cm² Long term cycling after two activation cycles
- Fixed gap: Shorted at 2nd cycle at 0.5 mA/cm²
- Fixed gap: Cycled more than 50th cycle at 0.5 mA/cm²

- Elucidate CCD discrepancy between Li symmetric and full cell
- Li symmetric cell
 - Better contact enabled higher CCD
- Li full cell
 - Pressure change during cycling induce cell shorting
 - Constant pressure setup: Mitigate cell shorting

Ham et al. Energy Storage Material. Under revision

SSRN: <u>https://ssrn.com/abstract=4213169</u> or <u>http://dx.doi.org/10.2139/ssrn.4213169</u>

Si Anode Synergy in Solid-State Batteries

Enable 99.9% Si anode without carbon and solid electrolyte

- Inventory loss to the passivating SEI remained relatively constant
- Realized Si cycling >500 cycles

However, it is paramount to *improve the initial Coulombic efficiency* (~76%) to achieve high energy density all-solid-state batteries

Porosity changes during cycling

~30 % Pores

~30 % Pores

Electrochemical performance

Dr. Darren Tan

Passivating Interfaces – Extremely Stable

Tan, D.; Meng, Y. S. et al., Carbon Free High Loading Silicon Anodes Enabled by Sulfide Solid Electrolytes for Robust All Solid-State Batteries. (Science 2022)

LG FRL - Anode Strategies

□ 1st Year Achievement

LGES-UCSD Frontier Research Laboratory

So Yeon Ham et. al. To be Submitted 2023

Remaining Challenges

Li2S price needs to come down by 5X -10X SSE particle size control must be done

Dry room compatibility - yes! Dry processing – at scale!!!

Pressure reduction from 100MPa – 50MPa – 5MPa Making SSB structural component

Processing is the Key

USA S1

USA S2

A Very Disturbing Paper...

pubs.acs.org/cm Thermal Runaway Behavior of Li₆PS₅Cl Solid Electrolytes for LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ and LiFePO₄ in All-Solid-State Batteries Taehun Kim,[‡] Kanghyeon Kim,[‡] Seonghyun Lee, Gawon Song, Min Soo Jung, and Kyu Tae Lee* Cite This: Chem. Mater. 2022, 34, 9159-9171 **Read Online** ACCESS Article Recommendations Metrics & More s Supporting Information ABSTRACT: All-solid-state batteries (ASSBs) have received much attention because of their high energy density and safety. However, the safety of argyrodite-type Li₆PS₅Cl (LPSCl)-based ASSBs is still not assured because their thermal stability has been assessed under selected mild conditions. Li metal Herein, we introduce the poor thermal stability of LPSCl with Ni-rich layered Li₆PS₅CI oxide cathode materials as the trigger of thermal runaway. The charged

composite cathode pellets containing Li_{1-x}Ni_{0.8}Co_{0.1}Mn_{0.1}O₂ and LPSCl are explosively burned at 150 °C even in Ar. Moreover, the mechanical abuse gives rise to violent burning at room temperature. This is due to vigorous exothermic chemical reactions between delithiated Li1-,Ni08Co01Mn01O2

and LPSCl. However, LPSCl with LiFePO₄ exhibits excellent thermal stability, such as no violent exothermic reactions even at 350 °C. This is because LPSCl is metastable with delithiated Li_{1-x} FePO₄. Moreover, LiFePO₄ shows excellent electrochemical performance, such as a high reversible capacity of 141 mAh g^{-1} and stable capacity retention over 1000 cycles, despite the fact that LiFePO₄ is known to be poorly electrochemically active for ASSBs. These findings provide fundamental insights to improve the thermal stability and electrochemical performance of LPSCI-based ASSBs.

Li metal iFePO 200 300 re (°C) LiNio 8Coo 1Mr

Article

As a summary, I believe this paper is creating very specific scenarios to generate a NCM fire, and misinterpreting the cause as the SSE, which is not related to the ignition in the first place.

Dr. Darren Tan – CEO of UNIGRID

Making ASSBs a Reality

D. Tan, J. Jang and Y.S. Meng Joule 2022

https://doi.org/10.1016/j.joule.2022.07.002

Acknowledgements First

Office of Science

Sustainable Power and Energy Center

KJ GROUP

LGES-UCSD Frontier Research Laboratory

Workflow design for battery

Quantum materials

Falcon Camera etc.

DOE BES 2012-now (Dr. Jane Zhu)

LiPON SSB and Perovskite SC and

Next-gen Cryo EM for Energy and

Memrisistive

Battery Prototyping

UC IRVINE MATERIALS RESEARCH INSTITUTE

Solid State Battery Team at my group