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CONTEXT & SCALE

The development of diverse next-

generation battery technologies is

highly required by decarbonized

society to better utilize renewable

energy. Aqueous acidic batteries

with hydrated proton charge

carriers are expected to deliver

high energy and fast kinetics while

being inexpensive and safe.

However, the anode choices are

still very limited and unqualified

due to the poor compatibility of

many metal/metal oxides with

acids.

This work demonstrates metallic
SUMMARY

Aqueous acidic batteries are a good choice to respond to battery
diversity, delivering safety, cost, environmental friendliness, and
high-power necessary for renewable energy storage. However,
the practical adoption is greatly challenged by low voltage and en-
ergy density due to the inadequate metal anode materials. Here,
we report an interfacial regulated Sn metal anode as the solution
of the last piece of the puzzle. The ease of recycling, low potential,
fast redox kinetics, and high capacity of Sn perfectly fit the battery
system, and the Sn metal shedding critical issue is successfully
suppressed by promoting uniform deposition for added interaction
from alloying. Consequently, this reversible Sn anode with
442 mAh g�1 matches well to different types of cathodes. The as-
assembled acidic batteries also demonstrate sufficient output
voltage (up to 1.7 V), energy density (up to 312 Wh kg�1 based on
both electrodes), kinetics (up to 24 C), and stability (up to 2,400
cycles).
Sn with high capacity and low

redox potential as anode to

enhance the upper limit of acidic

batteries. The high hydrogen

evolution overpotential, multiple

electron transfer reaction, and

high-kinetic stripping/plating

chemistry enable Sn to become

unique anode candidate in acid.

An interfacial alloying regulation

approach is applied to improve

the uniformity and reversibility of

Sn anode, thus achieving better

performance and stability. Such

Sn anode can also be coupled with

various advanced cathodes to

deliver promising performances.
INTRODUCTION

Replacing fossil fuels with renewable energy represents a huge step forward in

decarbonization.1 The growing market penetration of renewable but intermittent

energy sources such as wind and solar has generated critical needs for inexpen-

sive, safe, and long-lasting electrochemical energy storage technologies.2–4

Widely used lithium batteries are facing increasingly more challenges due to

the usage of toxic, flammable organic electrolytes and scarce electrode mate-

rials.5–7 As an alternative, aqueous acidic batteries (AABs) have the advantages

over lithium batteries in many applications for being low cost, non-flammable,

and easy to handle.8 Compared with well-developed aqueous metallic ion batte-

ries, AABs with non-metallic hydrated proton charge carriers are expected to

deliver higher energy and faster kinetics due to light weight, low carrying

charge, and no need to dehydrate hydrated protons.9,10 These features led to

development of diverse AABs (lead-acid,11 Mn-H2,
12 proton batteries,13,14

metal-proton batteries,15 etc.) with broad application prospects in both large-

scale energy storage systems and daily use scenarios, such as electric scooters.

Major breakthroughs in cathode materials have increased application potential of

AABs. Recently, electrolytic MnO2 cathode with high-kinetic Mn4+/Mn2+ chemis-

try doubled its theoretical capacity (308 vs. 616 mAh g�1) and achieved a higher

redox potential (1.23 V vs. SHE, standard hydrogen electrode) compared to one

electron reaction MnO2 electrode.16 Prussian blue analogue cathode like Cu

[Fe(CN)6]0.63,,0.37,3.4H2O based on proton (de)intercalation had been pro-

posed as a super-high-rate electrode, which could even maintain half capacity
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at 4,000 C-rate.17 On the other hand, the development of anode materials is fall-

ing behind in matching the advancement in the cathodes and gradually

becoming the performance-limiting component for most, if not all, AABs.18

Traditional aqueous battery anode electrodes (metal oxides, metals, etc.) have poor

compatibility with AABs since they may be dissolvable in acid. Among a few remain-

ing anode options, the choices that can balance potential, kinetics, and capacity are

very limited. As the most traditional anode, Pb undergoes a solid-state phase

transition during the redox process, resulting in slow reaction kinetics and short life-

span.8 Gas-type H2/H
+ anode may bring better kinetics and lower polarization, but

expensive long-lasting catalyst and heavy H2 storage cell limited it from being

further developed.12 Recent efforts in intercalation-type materials like MoO3 as

the anodes provide more options in AABs.19 Unfortunately, insufficient charge stor-

age capacity (mainly <300 mAh g�1) and intrinsically high redox potential (mainly

>0 V vs. SHE) render these materials being difficult to meet the practical application

requirements. Compared to other battery systems, metals with stripping/plating

behavior (Li, Na, Zn, etc.) are considered the most promising solutions for an-

odes.20,21 In principle, metal anodes have relatively high specific capacity and con-

ductivity, as well as faster reaction kinetics due to the direct conversion of metal/

metal ions.22 However, apposite metal anode requires low redox potential (mainly

below H2/H
+), which is difficult to stabilize in electrolyte with relatively high concen-

tration of protons.

High hydrogen evolution reaction (HER) overpotential and soluble ionic form are

essential properties for the stable operation of stripping/plating metal anodes for

AABs. Sn is a preferred choice because of its high HER overpotential in acidic envi-

ronment, low redox potential below SHE, and soluble Sn2+ when oxidized.23–25

Furthermore, it is relatively low-cost, non-toxic, and easy to recycle (Figure S1),

making it a sustainable option.26 With a body-centered tetragonal crystal structure

and similar surface energy for facets, Sn metal deposits in polyhedral morphology

isotropically and is less likely to form dendrite compared to Li or Zn.27 However,

large polyhedral Sn grains have limited contact with the substrate and aremore likely

to shed from the electrode and become ‘‘dead Sn’’ as the deposition capacity in-

creases. The continuous formation of dead Sn and consequently the depletion of

Sn ions in the electrolyte lower the battery performance leading to its eventual

failure.

Here, we successfully demonstrate a high-capacity and high-reversibility Sn

metal electrode as a universal anode choice for AABs via an interfacial copper al-

loying regulation approach. The copper substrate (Cus) is carefully selected from a

variety of Sn-based alloys with the appropriate HER activity, inertness in acid, low

toxicity, and cost effectiveness.28–30 Both the experimental study and theoretical

simulation show that the interfacial alloying significantly improved the reversibility,

deposition uniformity, and inhibition of the metal shedding, leading to better

electrochemical performance and stability. As a result, Sn/Cus depicts satisfactory

specific capacity (�442 mAh g�1), Coulombic efficiency (CE, �98%), polarization

(�11 mV at 2 mA cm�2), and cycling durability (�93% CE after 300 cycles). To

demonstrate its generality to the cathode medium, Sn anode was coupled with

various cathode materials such as PbO2, MnO2, and polyaniline (PANI) to form a

series of AABs. High output voltages (up to 1.7 V), superior specific energy den-

sities (up to 312 Wh kg�1 based on both electrodes), fast kinetics (up to 93%

charge/discharge capacity at 24 C), and long lifespans (up to 2,400 cycles) are

achieved.
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Figure 1. Sn electrode in aqueous acidic batteries

(A) Redox potentials and specific capacities of Sn metal anode and typically reported electrodes in

AABs. P1 and P2 indicate the first and the second plateau.9,17,32–38

(B) Voltages of recently reported AAB devices and theoretical voltages of Sn-based cells.9,38,39

(C) Schematic illustration of the charge storage mechanism of the Sn anode in acidic electrolyte.

The anions are omitted.

(D) Typical charge/discharge curve of Sn stripping/plating chemistry on graphite substrate at 2 mA

cm�2.
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RESULTS

Potential analysis of Sn metal anode in aqueous acidic batteries

We selected various metals that may have stripping/plating behavior and reactivity

near Pb electrode (Figure S2; Table S1).31 Sn is the best choice based on Sn2+/Sn

redox couple at �0.14 V vs. SHE with a high electron storage capacity of 451.6

mAh g�1. The high HER overpotential attributes its stability in acidic solution (Fig-

ure S3). These intrinsic advantages favor Sn in AAB systems (Figure 1A;

Table S2).9,17,32–38 As shown, the potentials of most electrodes are located at 0.2

to 1.0 V vs. SHE, limiting their matching options in full cell voltage. The Snmetal elec-

trode is among the most negative and high-capacity electrodes, which can match

with most electrodes (even some reported anodes) to achieve an output voltage

higher than 0.5 V, up to 1.8 V. Details of voltage window matching diagram from

recent published works in Figure 1B shows most of the full cell output voltages are

below 1 V.9,38,39 This unsatisfactory situation effectively ameliorated in the presence

of Sn. Moreover, according to the 4-pH diagram for H2O–Sn and previous studies,

Sn2+ exists as soluble Sn ion precipitate in proton-enriched electrolyte, which
Joule 7, 971–985, May 17, 2023 973
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Figure 2. Electrochemical performance of Sn electrodes

(A) Corrosion curves of the Sn/Gs and Sn/Cus at 10 mV s�1.

(B) Charge/discharge curves of Sn/Gs and Sn/Cus with a fixed charge capacity of 0.5 mAh cm�2 at 2 mA cm�2 after 25 cycles.

(C) Polarization profiles during continuous cycling at different current densities increasing from 2 to 20 mA cm�2 with a constant capacity of 0.5 mAh

cm�2.

(D and E) Magnified voltage profiles of Sn/Gs and Sn/Cus with a fixed charge capacity of 1 mAh cm�2 at 2 mA cm�2 (D) and corresponding CE (E). Inside

are optical photographs after cycling test.
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endows Sn metal functions to be more like the stripping/plating-type anodes

with fast kinetics in AABs (Figure 1C).40 Specific chemical behavior of Sn metal

anode was studied by preliminary electrochemical test in 2 M H2SO4 and 0.1 M

SnSO4 electrolyte on graphite substrate (Gs). The voltage profiles in Figure 1D

clearly exhibit a stable plateau at �0.42 V vs. SCE (saturated calomel electrode),

which is consistent with the conversion of Sn2+/Sn. The relatively low polarization re-

flects its superiority as an anode, but the CE of 78.5% is far lower than practical re-

quirements, let alone after long cycling.

Electrochemical performance and characterization of Sn anodes

To achieve higher Coulombic efficiency of Sn anode, Cus was carefully selected to

realize interfacial alloying regulation (Figure S4). The electrochemical performance

of Sn anode on Gs and Cus (Figure S5) was studied in a three-electrode system under

the same electrolyte used in the preliminary experiment. Figure 2A shows that Sn/

Cus owns a lower corrosion current density, which is expected to suppress the corro-

sion rate and parasitic side reactions.41 We then collected other indicators of Sn

anode performance on different substrate via galvanostatic charge-discharge

(GCD) method. A clearly longer discharge curve and near-theoretical capacity

(�441.6 mAh g�1) for Sn/Cus was observed (Figure 2B), corresponding to the higher

CE and less irreversible capacity loss. Moreover, the polarization of Sn/Cus is

reduced from 18.7 mV for Sn/Gs to 11 mV and is substantially smaller at different cur-

rent densities from 2 to 20 mA cm�2 (Figure 2C). When the current density is

switched back to 2 mA cm�2, the voltage polarization changed little for Sn/Cus, sug-

gesting a favorable stability.
974 Joule 7, 971–985, May 17, 2023
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To evaluate the stability, long-term cycling performance of Sn anodes were further

measured at a current density of 2 mA cm�2 with a capacity limitation of 1 mAh

cm�2 (Figures 2D and S6). As predicted by the preliminary experiment, the Sn/Gs

electrode is trapped with larger voltage oscillations and drastically reduced

charging plateau potential (especially after 100 h), which could be derived from elec-

trode failure accompanied with the severe hydrogen evolution. In contrast, the Sn

electrode based on Cus exhibits a more stable voltage profile along with a low po-

larization (�22 mV) even after cycling over 260 h. Furthermore, the corresponding

CE of the voltage profiles in Figure 2E shows that Sn/Cus electrode presents a steady

CE remaining at 91%–98% in 350 cycles, while Sn/Gs not only has a lower CE (�78%)

at the very beginning but also continues to decline to less than 30% after cycling.

Similar results were also found in other test conditions (Figure S7). Note, plenty of

black insoluble Sn appears under Sn/Gs electrodes after cycling tests but not found

in that for Sn/Cus. This phenomenon demonstrates that the dead Sn in Sn stripping/

plating chemistry is successfully prohibited in Sn/Cus. The scientific nature of the Sn

electrode design is also confirmed by investigating Sn stripping/plating behavior on

Pt and Ni substrate (Figure S8). Sn shows similar redox peaks and voltage profile

shape on all the substrates, but the cycling performance varies widely (Figure S9).

As a stable substrate in acid, which can form alloy with Sn, Sn/Pt exhibits a compet-

itive CE and lifespan with Sn/Cus. By contrast, the CE of Sn/Ni is much lower due to

the reaction of nickel and acid. Linear sweep voltammetry results also show that the

stability in acid is more important than HER activity. Under the comprehensive

consideration of stability and price, Cus is proven to be a suitable choice for a highly

reversible electrode, achieved by alloying. In addition, the thickness of Cus was

found not to be decisive for performance. When the thickness of Cus increases

from 20 mm to 400 mm, the electrochemical behavior (Figure S10) and cycling perfor-

mance (Figure S11) have no significant changes. This can be attributed to the fact

that the Sn-Cu alloying interaction only occurs at the interface, which will not cause

significant impact on the substrate.

Sn anodes were further characterized to verify the presence of interfacial alloying.

Typical polyhedron Sn particles were observed on both electrodes through scanning

electron microscopy (SEM), but the ones on Sn/Cus have much smaller size and

distribute more uniformly (Figure S12). The typical X-ray diffraction (XRD) patterns

of the Sn anodes at different electrochemical states are presented in Figure S13.

A stripping/plating mechanism is verified through the Sn signal, which raises at

charged state and disappears at discharged state. In addition, the form of Sn metal

is confirmed to be b-Sn (JCPDS#04-0673) with a body-centered tetragonal crystal

structure in both electrodes from Figure 3A.27 Except for the peaks from graphite

(JCPDS#41-1487) and Cu (JCPDS#01-1242) substrates, no extraneous peaks appear

in either pattern, proving that the Sn anode is free of impurities. The corresponding

magnified XRD patterns of facet (200) and (101) were detailed analyzed in Figure 3B.

Sn/Cus shows significantly larger full width at half maximum (FWHM) values than Sn/

Gs, which could be assigned to a smaller average crystallite size of Snmetal based on

Scherrer equation, consistent with previous visual results in Figure S12.42 Besides,

note that the position of two peaks corresponding to the facet spacing shifts toward

positive of Sn/Cus, indicating a reduced facet distance according to Bragg’s law.

This can be attributed to the lattice shrinkage caused by the incorporation of copper

atoms with smaller atomic radius into Sn lattice (1.35 vs. 1.45 Å), thus proving the ex-

istence of interfacial alloying.43,44

Relevant alloying interaction was further studied by chemical state via X-ray photo-

electron spectroscopy (XPS). The existence of Sn (IV) was from the partial oxidization
Joule 7, 971–985, May 17, 2023 975
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Figure 3. Material characterizations of Sn electrodes with/without alloying regulating

(A and B) XRD patterns (A) and part of XRD patterns (B) of Sn/Gs and Sn/Cus.

(C) Sn 3d XPS spectra of Sn/Gs and Sn/Cus.

(D) Cu 2p3/2 spectra of Sn/Cus at charged/discharged states.

(E and F) HRTEM images of Sn/Gs (E) and Sn/Cus (F).
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of tin anode during the sample preparation (Figure 3C). Sn 3d XPS spectra also re-

veals a �0.5 eV positive shift of Sn peak from Sn/Gs to Sn/Cus, indicating Sn metal

may have charge transfer with Cus.
45,46 It is further proven by high-resolution Cu

2p3/2 spectra in Figure 3D, which shows a �0.2 eV-lower binding energy in Sn/Cus
at fully charged state rather than discharged. It is reasonable due to the greater elec-

tronegativity of metallic Cu comparing with Sn (1.85 vs. 1.82), attracting electrons on

the surface of Sn and exists in Snd+/Cud� states.47 In comparison, no significant shift

is observed in C 1s spectra from Sn/Gs (Figure S14). High-resolution transmission

electron microscope (HRTEM) images Figures 3E and 3F reveal both (200) from

b-Sn (JCPDS#04-0673) and (220) from Cu (JCPDS#01-1242) that are seen in Sn/

Cus, with an interplanar spacing decrease of Sn (200), which is consistent with XRD

results. In addition, the interfacial alloying was testified by the scanning transmission

electron microscopy (STEM) and corresponding energy dispersive X-ray spectros-

copy (EDS) elemental mapping (Figure S15). Homogeneous distribution of Cu and

Sn is observed in Sn/Cus, while the distribution of C and Sn in Sn/Gs is independent

of each other. The alloying interface with a thickness of �0.5 mm was also observed

by SEM EDSmapping of side-view Sn/Cus electrode (Figure S16), and Cumass in the

alloying interface remained nearly unchanged when the deposition capacity

increased (Figure S17).

Insights into high Sn reversibility

The influence of interfacial alloying on reversible Sn deposition electrochemistry was

further investigated. The morphology evolution study was first conducted through
976 Joule 7, 971–985, May 17, 2023
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(A) SEM images for Sn deposition on Gs and Cus substrates with different deposition capacities from 0.5 to 10 mAh cm�2.

(B) The voltage-time curves during Sn nucleation at 2 mA cm�2 on Gs and Cus electrodes.

(C) The calculated binding energy of Sn2+.
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(E and F) Illustration of the Sn metal deposition process on Gs (E) and Cus (F) substrate. Blue area means the interfacial alloying interaction. E1 and E2

mean the absolute value of binding energy on Sn seed and substrate, respectively.
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ex situ SEM characterizations (Figure 4A). In the initial nucleation process, more Sn

nuclei are observed in Sn/Cus, and the nucleation number keeps increasing during

the deposition process. In contrast, the Sn grains in Sn/Gs prefer to grow over a

few existing crystal nuclei rather than forming new ones. As a result, Sn polyhedron

particles on Gs are substantially larger and uneven with very limited contact on sub-

strate, whereas themetallic particles on Cus are relatively small and uniform even at a

capacity of 10 mAh cm�2. The real-time interface image was also acquired at

different stages during Sn plating process (Figure S18). Several visible spots ap-

peared after deposition for 10 min on Sn/Gs, and the growth of particles boomingly

evolved and triggered a self-amplification behavior with the increase of the deposi-

tion time. By contrast, Sn/Cus showed a smooth surface during the whole plating

process, which is consistent with the SEM results. To better understand the reason

behind this difference, the voltage-time curves were collected to measure the over-

potential during Sn nucleation. The nucleation overpotential indicates the gap
Joule 7, 971–985, May 17, 2023 977
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between the voltage extremum of the sharp voltage dropping and equilibrium

plating potential at the beginning of the deposition process.48 Smaller nucleation

overpotential can be construed as an easier nucleation process in thermodynamics

for subsequent crystal growth.49 The result shows both electrodes undergo quick

voltage dips corresponding to the nucleation process, but the overpotential of

Sn/Cus (3.8 mV) is remarkably lower than that of Sn/Gs (25.7 mV) (Figure 4B). Such

a dramatic difference illustrates the impact of interfacial alloying interaction in

reducing the resistance for Sn nucleation through enhanced number of nucleation

sites.

We then simulated the adsorption and diffusion processes of Sn via the density func-

tional theoretical (DFT) calculation (Figures S19 and S20). The binding energy of Sn

on Gs, Cus, or Sn metal in Figure 4C indicates that there is only one weak interaction

between Sn and C (002) with a high binding energy of �0.74 eV, while Cu (220)

(�5.11 eV) has a significantly lower binding energy and is stronger than Sn (200)

(�4.46 eV) due to the extra interaction. The Cus substrate also possesses more nega-

tive potential vs. Pt in a three-electrode system than Gs, which is more likely to have

contact with the Sn2+ ion in the Helmholtz layer (Figure S21).50 Lower binding energy

of Cu enables Cus to alleviate the concentration gradient at the interface by adhering

a certain amount of Sn2+, thus promoting uniform electric field distribution.

Moreover, higher electron density near Fermi level in Sn projected density of

states (PDOS) of Sn/Cus is observed, which corresponds to a better electron

transfer activity (Figure S22). We also calculated the diffusion energy barriers of

Sn migration between the adjacent energy minima to another nearby minima (Fig-

ure 4D). The energy barrier of Sn diffusion is only 0.12 eV on Gs, revealing an essen-

tially instantaneous Sn diffusion process. In contrast, Cus has the highest diffusion

energy barrier of 1.32 eV, which plays an important role in uniform deposition pro-

cess. The details on Sn metal deposition on Gs and Cus are illustrated in Figures 4E

and 4F. Relatively low fraction of Sn nucleates on Gs in the beginning. During the

continuous deposition, the subsequent Sn atoms prefer to grow on the existing

nuclei rather than form a new one as the result of a much stronger Sn binding energy

on Snmetal surface thanGs. In addition, the Sn ions near bare Gs surface are prone to

continuously diffusing onto these Sn nuclei and the resultant tip effect even makes

the process more prevalent, leading to ununiform large particles. On the contrary,

Cus has a slightly stronger binding energy than Sn metal, so the deposited Sn is

easier to form new nuclei and subsequently increases the nucleation sites. The larger

energy barrier also impedes the migration of Sn ions to as-deposited Sn particles.

When charged under the same capacity, Sn/Cus will form more homogeneous and

smaller particles.

To confirm the origin of the stability, change, and deactivation process, a long-term

charge/discharge profile was magnified to study the nucleation process during

cycling (Figure 5A). The nucleation overpotentials of both Sn/Gs and Sn/Cus
decrease during the second cycle compared with the first one, which can be as-

signed to the several Sn nuclei left on the substrate by incomplete discharge. Exist-

ing Sn nuclei make the following nucleation process easier and reflected in the

reduced overpotential. However, the overpotential of Sn/Gs re-increases every

few cycles throughout the test (Figure S23), indicating that Sn particles would fall

off and become deactivated, thus requiring re-nucleation on the next charge. The

accumulation of dead Sn in Sn/Gs and Sn concentration decrease would finally cause

serious HER side reaction, leading to a dramatic reduction in CE and the electrode

failure (Figure S24). Note that the overpotential of Sn/Cus remains nearly unchanged

during cycling and the CE is slightly less than 100%, so the nuclei are well preserved
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as the result of the increased interaction. This analysis was further proven by the SEM

images of two electrodes after cycling (Figure 5B). Consequently, the Sn stripping/

plating chemistry with interfacial alloying is summarized in Figure 5C. Alloying opti-

mizes the deposition process and results in a better uniformity and reduced average

crystallite size. The smaller polyhedron Sn particles along with enhanced interaction

between Sn and substrate suppress themetal shedding during the charge/discharge

process, thus improving the CE and cycling stability.

Performance of acidic Sn metal batteries

To further demonstrate the potential of Sn anode in energy storage applications, we

assembled a series of advanced AAB devices by employing our Sn/Cus anode and

representative cathodes of different mechanisms and redox potentials (Figure 6A).

These aqueous acidic batteries with hybrid mechanisms are also known as ‘‘acidic tin

metal batteries,’’ similar to the nomenclatureof other batterieswithmetal anode. These

state-of-the-art tinmetal batterydevices (Figures 6B andS25; Table S3) have certain ad-

vantages over other recently reported acidic aqueous batteries.8,9,33,34,36,38,51 PbO2 as

themost classic cathodewas used for being among theoneswith the highest potentials

(Figure S26). PbO2 undergoes PbO2/PbSO4 conversion reaction in this PbO2//Sn bat-

tery system (Figure S27).52 The GCD profile of our PbO2//Sn cell at different current

densities are shown in Figure 6C, which exhibits the full-cell discharge plateau

of �1.72 V. Although the output voltage is slightly lower than that of conventional

lead-acid batteries, PbO2//Sn batteries may achieve higher energy density under

same cathode mass loading at reduced toxic Pb usage by calculation. In addition,
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PbO2//Sn batteries have good rate capability (Figure S28) and durability of 74.3% ca-

pacity retention after 1,000 cycles (Figure 6D).

MnO2//Sn batteries were also assembled to evaluate the advantages of Sn

(Figures 6E and S29). MnO2 is another important cathode with excellent electro-

chemical characteristics in AABs. However, the inadequate anode has dramatically

restricted the potential and capacity of MnO2 based AABs. Note that the strip-

ping/plating-type MnO2//Sn battery displayed a flat output voltage �1.5 V at 2

mA cm�2 and a high voltage retention of more than 97.5% when current density rea-

ches 12 mA cm�2 (Figure S30). Such a high discharge voltage considerably outstrips

the previous MnO2-based AABs. It also remains at 93% theoretical discharge
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capacity under a charge capacity of 0.5mAh cm�2 at 24C, proving its high-rate capa-

bility. The superhigh rate can be ascribed to the high kinetic of stripping/plating

mechanism at both sides (Figure S31) and the good electroconductivity of Sn

anode.53 Note that the specific capacity, maximum energy density and power den-

sity based on the mass of both electrodes achieve 255.1 mAh g�1, 312.2 Wh kg�1,

and 6.8 kW kg�1, respectively. More energy density values based on different

masses are also provided in Table S4 to provide more references. Moreover, our

MnO2//Sn battery shows long-cycling stability without obvious capacity decay at

�100% CE after 2,400 cycles (Figure 6F). The performance was also stable under

the electrolyte-leaner conditions (Figure S32). Such promising battery performance

parameters make MnO2//Sn AABs a potential solution in the future grid-scale en-

ergy storage and daily transportation. To demonstrate the universality of Sn anode,

we also used PANI cathode with intercalation-mechanism to form a PANI//Sn battery

(Figure S33).54 Although PANI has a low redox potential even reaching levels of

some AAB anodes (like PTO, pyrene-4,5,9,10-tetraone), the battery is still able to

deliver a voltage �0.64 V, a high-rate capability (51% capacity retention from 2 to

20 mA cm�2) and a good stability (82.7% capacity retention after 1,600 cycles) (Fig-

ure S34). Therefore, the Sn/Cus anode can adapt to various AAB cathodes with

different mechanisms to form high-performance devices.
DISCUSSION

This study demonstrates a promising Sn metal anode with low redox potential, high

capacity, and long durability for the application in AABs with enhanced output

voltage, rate performance, and energy densities. The critical dead Sn issue is well

prohibited by copper-tin interfacial alloying regulating, which results in high CE

and long calendar life of Sn/Cus anode. For one thing, propensity for nucleation

and higher Sn migration energy barrier lead to more uniform Sn deposition layer

at reduced grain size. For another, extra interfacial interaction suppresses shedding

of Sn polyhedron particles, thus enabling reversible stripping/plating chemistry.

Benefiting from Sn/Cus anode and intrinsic advantages of proton-based batteries,

we obtain various AABs with high performance by coupling Sn and advanced cath-

odes, forming a more diverse battery system. Especially MnO2//Sn battery provides

us a new potential choice for energy storage with excellent energy/power densities

and service life. There is still much to explore in Sn-based AABs, like searching new

electrolyte components, building 3D structure substrates for higher loading, further

inhibiting the competition reaction of hydrogen evolution, and optimizing tin recy-

cling process to reduce costs, but the development of promising Sn anode in this

work will be immediately beneficial for the competitiveness of AABs as a next-gen-

eration choice for energy storage.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the Lead Contact, Ying Shirley Meng (shirleymeng@uchicago.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any datasets.
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Methods

Preparation of substrates and electrolytes

All the chemicals were of analytical grade and used directly without any purification.

Gs and Cus were derived directly from graphite paper (0.5 cm3 2 cm3 0.04 cm) and

pure Cu sheet (0.5 cm 3 2 cm 3 0.04 cm), respectively. Before use, Cus, Pt, and Ni

were pretreated with hydrochloric acid and then washed with acetone and ethanol

for 15 min to purify the surface. The Gs was also rinsed with ethanol to increase its

hydrophilicity prior to experiments. For electrolyte, 1.074 g of stannous sulfate

(SnSO4) was added into 50 mL 2 M H2SO4 to prepare the mixed electrolyte of 2 M

H2SO4 and 0.1 M SnSO4.

Preparation of cathode materials—PbO2, PANI, and MnO2

PbO2 was synthesized using a modified method reported in reference. PbO2 was

loaded on a piece of graphite paper (0.5 cm3 2 cm3 0.04 cm) by electrodeposition

in a typical three-electrode setup on a CHI 760 electrochemical workstation with a

constant voltage of 2.4 V for 700 s. The electrodeposition electrolyte is an aqueous

solution containing 0.5 M Pb(NO3)2 and 1 M HNO3. The three-electrode cell system

was assembled with graphite paper as the working electrode and a carbon rod and a

saturated calomel electrode (SCE) were used as the counter and reference

electrodes, respectively. The mass loading of as-obtained PbO2 electrode is

24.1 mg cm�2.

PANI was synthesized using amodifiedmethod reported in our previous study. PANI

was also plated onto carbon cloth (CC, 0.5 cm 3 2 cm 3 0.04 cm) by electrodepo-

sition. This process was performed in a three-electrode system with cleaned CC, a

carbon rod, and a SCE as the working electrode, the counter, and reference elec-

trodes, respectively. The electrodeposition solution consisted of 1 M H2SO4 and

0.1 M aniline monomer. This electrodeposition was conducted by running a CV

test at 10 mV s�1 with a voltage range from 0 to 1 V for 1 h. The mass loading of

as-obtained PANI electrode is 1.5 mg cm�2.

MnO2 was electrodeposited onto graphite paper (0.5 cm3 2 cm3 0.04 cm) in a con-

ventional three-electrode setup using Neware battery system (CT-3008-5V10mA-

164, Shenzhen, China) on 1.4 V (vs. SCE) for 0.5 mAh cm�2. The mass loading of

the material is 0.81 mg cm�2. Before electrodeposition, 0.3 M H2SO4 and 2 M

MnSO4 were prepared as the electrodeposition solution.

Electrochemical measurements

GCD curves, electrochemical impedance spectroscopy (EIS), and cyclic voltammo-

gram (CV) were recorded by Neware battery system (CT-3008-5V10mA-164, Shenz-

hen, China) and electrochemical workstation (CHI 760E) under 25�C. In order to

measure the electrochemical plating/stripping behaviors of Sn/Sn2+, Gs and Cus
substrates with a surface area of 0.5 cm2 were used as working electrode, a graphite

rod was employed as counter electrode, and SCE was the reference electrode in a

three-electrode system with 20 mL electrolyte. The electrolyte is a mixed solution

of 2 M H2SO4 and 0.1 M SnSO4. The aqueous PbO2//Sn and PANI//Sn were tested

in two-electrode system in the electrolyte of 2 M H2SO4 and 0.1 M SnSO4.

For the pouch cell demonstration, all used electrodes (2 cm3 1 cm) were the same as

the previous tests. The electrolyte volume is 1 mL per cell. The pouch cells were

assembled and sealed by the vacuum sealer. These pouch cells were tested under

the same condition as the flooded cells. The voltage profiles can be found in

Figure S35.
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Preparation of electrolyte and measurement conditions of MnO2//Sn cell

2.1477 g of SnSO4 and 33.802 g manganese (II) sulfate monohydrate (MnSO4$H2O)

were dissolved in 100 mL 0.3 M H2SO4, resulting in a mixture of 0.3 M H2SO4, 2 M

MnSO4, and 0.1 M SnSO4. For MnO2//Sn cell assembly, Gs and Cus were used as the

anodewith a surfaceareaof 0.5 cm2, and thegraphitepaper coatedwithMnO2wasem-

ployed as the cathode in a two-electrode system. The N/P ratio by mass is �1.4. The

charging process was conducted by a constant voltage (2.1 V) method to charge a

certain value, and the discharging process was inclined to 0 V by a galvanostatic dis-

charging method after activation. The electrolyte-leaner MnO2//Sn cell was tested us-

ing an acrylic box. The electrode area was 1 cm2, and the electrolyte volume was 1 mL.

Characterizations

The electron micrographic structures of the deposited Sn on the substrates were

characterized by Field-emission SEM (SEM, JSM-6330F, and SEM, g-500) and TEM

(FEI Tecnai G2 F30). The crystalline structures and composition analysis of the pre-

cipitates were investigated by XPS (NEXSA, Thermo FS), FTIR (Nicolet/Nexus 670),

and XRD (D-MAX 2200 VPC, RIGAKU). XPS was performed by using Al K Alpha

source gun (hv = 1486.6 eV), an energy step size of 0.05 eV, and a pass energy of

40 eV. For XPS test, the capacity was controlled at 0.1 mAh cm�2 for Sn/Cu alloy sur-

face investigation.

DFT calculation

All the calculations were carried out with DFT performed using the VASP program

package. The generalized gradient approximation (GGA) in the scheme of

Perdew-Burke-Ernzerhof (PBE) function was used to calculate the electron ex-

change-correlation interactions. A 400.0 eV cut-off energy was used for plane-

wave basis set. All atomic positions and lattice vectors were fully optimized using

a conjugate gradient algorithm to obtain the unstrained configuration. The conver-

gence criterion for the structural optimizations was performed until the change of to-

tal energy was less than 1 3 10�5 eV, and all the forces on each atom were smaller

than 0.01 eV/Å. All the structures were optimized with the Monkhorst-Pack K-point

grid. The 4 3 4 3 1, 3 3 3 3 1, and 3 3 4 3 1 K-points were adopted to Sn (200), Cu

(220), and C (002) planes, respectively. A vacuum space of 10 Å was placed along the

z axis to avoid the interaction among the slabs. To find the transition states, nudged

elastic band (NEB) method was used to study the minimum energy pathway of the

diffusion of Sn metal on the surface.
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