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ABSTRACT 

Monocrystalline orthorhombic Na0.44MnO2 nanoplate as a potential cathode material for 

sodium-ion batteries has been synthesized by a template-assisted sol-gel method. It exhibits 

high crystallinity, pure phase and homogeneous size distribution. During the synthesis, acidic 

and reductive conditions are applied to limit the production of unfavorable Birnessite phase in 

the precursor, and colloidal polystyrene is included to avoid morphology collapse during the 
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gel formation and particle elongation in one direction. The decompositions of polystyrene and 

citric acid during high temperature firing offer a reductive carbothermal condition which can 

suppress the formation of unidimensional particles, and limit particle growth along the [001] 

direction. As a consequence, the material delivers 96 mAh g
-1

 discharge capacity at 10 C 

(86% of 0.1 C capacity) and maintains 97.8% capacity after 100 cycles at 0.5 C. Such 

superior rate capability and cycling stability of this material are among the best to date, 

suggesting its great interest in practical applications. 

 

Keywords: Sodium-ion batteries; Cathode; Nanoplate; Rate capability; Cycling stability 

 

 

 

1. Introduction 

The urgent demand for developing a sustainable and highly efficient energy storage system 

has led to a great deal of interest in lithium-ion batteries (LIBs) [1-3]. However, the 

geographically constrained Li mineral reserves combined with the increasing demand for Li 

commodity chemicals, linked to the foreseen growing implementation of large-format LIBs, 

will surely drive its price up. LIBs might become too expensive to be applied in the rapidly 

developing electric vehicles or in large stationary energy storage systems. In contrast to 

lithium, sodium is very abundant in nature and widely available in different forms [4]. It is 

also expected to show similar properties to lithium, according to their proximity in the 

periodic table. In addition, as sodium does not alloy with Al, it would allow substituting Cu 
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current collector at the anode for further gains in cost and weight. These advantages of 

sodium motivate the exploration of rechargeable sodium-ion batteries (NIBs) as a next 

generation energy storage system, which indeed has attracted a great research attention 

recently [5-7]. 

As a matter of fact, Na
+
 ion (de-)intercalation and storage are still very challenging since 

the ionic radius of Na
+
 (0.98 Å) is larger than that of Li

+ 
(0.69 Å) [8, 9], which makes the 

accommodation of Na
+
 ions in a host material difficult and often leads to severe structural 

degradation [10]. Thus, developing active materials with improved rate performance and long 

term cycling stability for NIBs represents the main research challenge. Numerous active 

materials have been intensively studied as candidates for NIBs cathodes, including sodium 

transition metal (TM) pyrophosphates [11-13] and sodium transition metal phosphates (TM: 

Co, Mn, Fe, Ni, Cr, and multicomponent transition metals) [14-18]. These polyanion-based 

structures with stable host frameworks and strong P-O covalent bonds are thermally stable 

[11]. Nevertheless, most of these materials exhibit inferior electrochemical performance, 

especially a poor rate capability, originating from low electronic conductivity and reduced 

mobility at phase boundaries, which limits their practical capacity values. P2-type NaxTMO2 

are considered to be promising candidates; and these compounds are being introduced as 

cathode materials for NIBs due to their facile synthesis and structural stability [19-21]. 

Among them, Na0.44MnO2 (Na4Mn9O18) presents interesting characteristics linked to its open 

structure with interconnected and large tunnels, which is able to sustain the multiple phase 

change that occurs during the Na
+
 (de)-insertion processes [22, 23]. Sauvage et al. 

demonstrated reversible insertion and extraction of Na
+
 ions in pure Na0.44MnO2 with an 
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initial capacity of c.a. 80 mAh g
-1

 at 0.1 C [22]. However, after 50 cycles, only half of the 

original capacity was retained. More recently, research focused on downsizing particle, such 

as nanowires. The obtained Na0.44MnO2 exhibited improved cycling performance combined 

with higher capacities [10] and less than 7% capacity fading during the first 30 cycles [10]. 

Although the cycling performance was improved to a certain extent, the rate capability, 

especially at high rate still needs to be enhanced.  

Considering that Na0.44MnO2 bi-dimensional structures (nanoplates) extending 

perpendicularly to Na
+
 most favorable insertion pathways would allow limiting surface 

defects, increasing the tap density and fast Na
+
 (de)insertion (as compared to unidimensional 

particles), designing Na0.44MnO2 material with this morphology is an efficient strategy to 

achieve enhanced rate capability and volumetric energy density. However, it is known that 

Birnessite nanoplates can form as an intermediate during the firing process of Na0.44MnO2 

[24], especially in alkaline and oxidative condition. They then split into Na0.44MnO2 

unidimensional particles upon high temperature annealing [25], while the obtaining of 

bi-dimensional Na0.44MnO2 seems to be favored by direct high temperature sintering and the 

use of reductive condition, perhaps as a result of avoiding Birnessite intermediate structure. 

More recently, Xu et al. [26] synthesized Na0.44MnO2 submicron slabs by a citric acid-based 

sol-gel synthesis, and obtained slightly extended (001) surface. However, the obtained slabs 

presented in wide range of widths and several grooves collapsing on their surface, reminiscent 

of Birnessite splitting mechanism.  

Thus, in order to avoid extensive elongation in one direction and obtain homogenous 

morphology, a novel sol-gel method (NSG) with self-made in-house polystyrene (PS) is 
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applied to synthesize Na0.44MnO2 material in this work. PS colloidal suspension is added to 

the precursor solution. It serves as a dispersion additive which can avoid the collapse of 

morphology during the gel formation, provides extra carbon source and offers a carbothermal 

reductive environment during firing. Orthorhombic Na0.44MnO2 nanoplates are obtained, and 

its performance as cathode material for rechargeable NIBs is evaluated as well. In comparison, 

Na0.44MnO2 material is also synthesized by the conventional sol-gel method (SG). 

 

2. Experimental 

2.1. Synthesis 

Polystyrene (PS)-contained solution was synthesized by an emulsion polymerization 

method. Potassium persulfate (0.12 g) and sodium dodecyl sulfate (SDS 0.4 g) were dissolved 

in aqueous alcohol, and then drop 40ml of styrene monomer under Ar atmosphere and 

continuous rapid stirring. The colloidal suspension with dispersed PS was obtained by 

continuously stirring the mixture at 70 °C for 8 hours.  

In syntheses of Na0.44MnO2 active materials, stoichiometric amounts (calculated based on 

the 0.04 mol target material) of sodium nitrate (NaNO3, Sigma-Aldrich AR), manganese 

acetate (Mn(AC)2·4H2O, Sigma-Aldrich AR), as-prepared 10 ml PS-contained solution and 4 

g citric acid (C6H8O7, Sigma-Aldrich AR) were dissolved in 100 ml distilled water. Here, 

additional to the chelating function, citric acid provided a reductive environment. After 

stirring for half hour, the mixture was heated to 120 °C until all the solvent evaporated. More 

citric acid was added in this process to maintain the pH value in the range of 4 to 5, which can 

contribute to the homogeneous distribution of the metal precursor. The xerogel was then 
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collected and thermal treated at 800 °C for 10 hours under air to obtain the target material. 

For the convenience, the sample prepared under this procedure is named as NSG-Na0.44MnO2. 

To synthesize Na0.44MnO2 by conventional sol-gel method, a solution was initially prepared 

by dissolving the stoichiometric amounts of sodium nitrate and manganese acetate in 100 ml 

distilled water. The mixed precursor was obtained by heating the prepared solution at 120 °C 

for 8 hours. The post thermal treatment was kept same as the NSG approach, and the sample 

is named as SG-Na0.44MnO2. 

2.2. Characterization 

The crystal structure was characterized by X-ray diffraction (XRD) on a Bruker D8 

Advance (Bruker) with Cu Kα radiation at room temperature. The patterns were recorded in 

the 2θ range of 10-70°. Particle morphologies were evaluated using a field-emission scanning 

electron microscope Auriga) equipped with a focused ion beam (FIB) (FE-SEM, Zeiss). The 

detailed crystal structure was further analyzed by transmission electron microscopy (TEM, 

Zeiss Libra 200 FE) operating at 200 kV. Selected area electron diffraction (SAED) pattern 

was recorded by a Gatan CCD camera in a digital format. The electronic conductivity of 

prepared SG-Na0.44MnO2 and NSG-Na0.44MnO2 samples were investigated by an impedance 

spectroscopy with Novocontrol AN-alpha analyzer and POT/GAL 20/11 electrochemical test 

station. Each sample was pressed under the same pressure to obtain a pellet with 1.0 mm in 

thickness and 8 mm in diameter. Before the conductivity measurement, both sides of pellet 

were coated with 120 nm thick Au. During the investigation process, an alternating current 

(frequency range from 100 mHz to 10 MHz) with voltage of 1 V was utilized at room 

temperature. 
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2.3. Electrochemical measurements 

The slurry for preparing the cathode electrodes was obtained by mixing the active material, 

conductive carbon (Super C65, Imerys) and binder Poly (vinylidene fluoride) (PVdF, Kynar® 

FLEX 2801, Arkema Group) in a weight ratio of 80:10:10 in N-methyl-2-pyrrolidone (NMP, 

Sigma-Aldrich) using a ball milling method. The slurry was coated on an Al foil and dried at 

80 °C overnight. After being punched into  12 mm disc, the electrodes were further dried 

for 12 hours under vacuum at 110 °C. The mass loading of prepared electrode is around 

2 mg cm
-2

.
 
The electrochemical performance was evaluated in 2032 coin cells, using sodium 

metal foil as counter electrode. Cathode and sodium metal were separated by glass fiber mats 

(Whatman GF/D) wetted with 1 M sodium perchlorate (NaClO4, Sigma-Aldrich) in an 

ethylene carbonate (EC) / propylene carbonate (PC) equivolumic mixture. Galvanostatic 

cycling was carried out on MACCOR series 4000 battery testers in a voltage range of 2.0– 4.0 

V at various current rates. All voltages reported in this work refer to the Na counter electrode. 

Cyclic Voltammetry measurements were conducted on a VSP electrochemical workstation 

(Bio-logic), applying a sweep rate of 0.02 mV s
-1

. 

2.4. In-situ XRD measurement 

In-situ XRD analysis on Na0.44MnO2 cathode during Na ion insertion and extraction has 

been performed using a cell, as being reported in our previous work [27, 28]. The cell body 

was made of stainless steel covered internally by a Mylar foil for electrical insulation. The 

electrode slurry was cast directly on a glassy carbon SIGRADUR® window (180 μm, HTW 

Hochtemperatur Werkstoffe GmbH), which served both as current collector and “transparent 

window” for the X-ray beam. The coated glassy carbon was subsequently dried at 80 °C for 4 
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hours and at 40 °C under vacuum overnight. Metallic sodium foil served as counter electrode 

and Whatman GF/D glass fiber mats served as separators, drenched with 300 μl of electrolyte. 

The assembled cells were rested for 6 hours before the measurement. A blank measurement of 

pure PVdF was carried out to confirm that the binder does not show any reflection within the 

investigated 2θ range. Subsequently, the cell was charged and discharged by cyclic 

voltammetry applying a sweep rate of 0.02 mV s
-1

 between 2.0 and 4.0 V starting from open 

circuit voltage (OVC) in the anodic direction (charge). In parallel, XRD analysis was 

performed, within the 2θ range of 10 - 90 °, with a step size of 0.01838 ° and a step time of 

0.52 s, resulting in a complete individual measurement in 40 minutes, with a rest period of 

140 s. 

3. Results and discussion 

Figure 1a and 1b show the SEM images of the as prepared NSG-Na0.44MnO2 material under 

different magnifications. The low magnification image (2kx, Figure 1a) shows a rather 

uniform size distribution of the particles (6 µm in length and 2µm in width), compared with 

SG-Na0.44MnO2, as can be seen in Figure 1g. Different from SG-Na0.44MnO2 (Figure 1h), 

which shows more or less nanorod shape, the high magnification image (50kx, Figure1b) 

indicates that an individual particle of NSG-Na0.44MnO2 is formed by several nanoplates 

bundled together. According to FIB image, showed in Figure 1c, NSG-Na0.44MnO2 nanoplates 

have a specific lamellar with channels distributed between plates. The thin nanoplate (with the 

thickness of less than 100 nm) provides a large surface area and the channels improve the 

electrode/electrolyte contact. Both of them can facilitate the (de-) intercalation of Na
+
-ions, 

enhance the Coulombic efficiency of the material and reduce the electrode polarization. More 
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interestingly, an inner lamellar structure was also confirmed by TEM (Figure 1d). It can be 

observed that the slab-like shape particle consists of a series of adherent nanoflakes 

overlaying each other; these nanoflakes are in the wideness of 5-20 nm, forming very well 

lamellar structure. The result reveals that further crystallization happens during the heating 

process. However, no nanowire splits from the formed stable structure, which is different as 

literature reported [10, 25]. High resolution TEM (HRTEM) images of an individual particle 

(Figure 1e and 1f) show (200) and (002) planes of the crystalline phase of NSG-Na0.44MnO2, 

as being labeled in Figure 1f. The corresponding selected area electron diffraction (SAED) 

pattern recorded along [010] direction (insert of Figure 1f) also displays (200) and (002) 

planes of NSG-Na0.44MnO2. Thus, the crystal grows in parallel with (010) plane, resulting in 

the formation of nanoplates. 

It has been reported that, if the ratio of Na to Mn in the starting material is slightly higher 

than 0.51, a mixture of orthorhombic Na0.44MnO2 and hexagonal Na0.7MnO2 could be obtained 

[29]. Therefore, in order to get the pure phase, the ratio of Na and Mn agents needs to be well 

controlled during synthesis. The XRD patterns, as showed in Figure 2a, confirm that the two 

materials obtained in this work are well consistent with the orthorhombic Na0.44MnO2 phase 

(Pbam space group, JCPDS No. 27-0750). There is no trace of impurities viewed in the 

patterns, such as Mn2O3, which was detected in earlier reports [30, 31], or NaxMnO2 with x 

value different from 0.44. The ICP-OES determined that the mole ratio of sodium and 

manganese of NSG-Na0.44MnO2 sample was 0.435:1, within the 2% error of the expected 

0.44:1. The crystallinity of NSG-Na0.44MnO2 is much better than that of SG-Na0.44MnO2 due 

to the relatively narrow and high diffraction peaks. The schematic illustration, in Figure 2b 
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(right), shows that the crystal structure of Na0.44MnO2 includes two groups of manganese ion 

units: sheets of edge-sharing octahedra MnO6 which consists of all Mn
4+

 ions and half of the 

Mn
3+

, and columns of square-pyramids MnO5 built by the rest Mn
3+

. Two types of complex 

tunnels can be built from the different edge-linked chains. Na1 and Na2 sites are situated in 

large S-shaped tunnels, while Na3 site is located in smaller pentagonal tunnels [32, 33]. The 

main diffusion pathway for Na
+
 ions is along the c-axis ([001] direction), when the material is 

fully discharged, and all the sodium sites are occupied in Na0.66MnO2 [22, 34]. The wide 

tunnel structure may accommodate the stresses associated with the structure change during 

electrochemical process and benefit the cycling performance. Therefore, the rate capability of 

NIBs employing Na0.44MnO2 as cathode materials can be significantly improved by tuning the 

crystal habit.  

Figure 3a illustrates the crystal growth of NSG-Na0.44MnO2 material, which is concluded 

from TEM and XRD results. The c axis, which is also the crystal orientation [001], has been 

reported as the favorite direction of the crystal growth for Na0.44MnO2 [35-37]. As the result, 

the nanorod shape for this material is preferred, and relatively lower amount of (001) planes 

on the particle surface is obtained. It is also proved by SG-Na0.44MnO2 synthesized in this 

work, and the material crystalizes into rod-shape particles as showed in Figure 1h. Since it is 

also the direction of large S-shape channel for Na
+
 (de)-insertion [26], the long distance of 

Na
+
 diffusion pathway as well as the limited rate performance of the material unfortunately 

can be expected. Different from the nanorod, the crystal of nanoplate shape grows in parallel 

with (010) plane, which can not only limit the length of the crystal structure along c axis 

([001] direction), but also increase the length along a axis ([100] direction). Thus, the size of 
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the particle surface perpendicular to c axis is enlarged and the better rate capability will be 

achieved. Meanwhile, as being showed in Figure 3b, the relatively thin nanoflake and tunnel 

among the overlapping nanoflakes could reduce the diffusion distance of Na
+
 ions and benefit 

the electrolyte permeation. With these advantages, a great enhancement of electrochemical 

performance can be expected from the as prepared NSG-Na0.44MnO2 nanoplates. 

The electrochemical behaviors of the NSG-Na0.44MnO2 were first investigated by cyclic 

voltammetry (CV) with a sweep rate of 0.02 mV s
-1

 between 2.0 and 4.0 V. The resulting 

voltammograms are shown in Figure 4a. The first cycle exhibits at least six pairs of 

symmetrical redox peaks, which represent the different intercalation/deintercalation steps of 

Na
+
 ions into/from NSG-Na0.44MnO2, presented by different colors of the first CV plot (Figure 

4a). The redox peaks were attributed to consecutive two-phase reaction mechanism [10, 22, 

38], but the highly reproduced shape and the very small voltage gap between each redox 

couple imply the fast diffusion of Na
+
 ions during the electrochemical measurement. 

Nevertheless, a weak oxidation peak (when the voltage is higher than 3.6V) in the initial 

anodic scan has no corresponding reductive peak, which may be attributed to the electrolyte 

decompositions. Except this, the shape of the oxidation/reduction peaks after the first cycle 

remains unchanged, indicating an excellent reversibility of Na insertion into 

NSG-Na0.44MnO2. 

In order to investigate the initial electrochemical reaction of NSG-Na0.44MnO2, in-situ XRD 

analysis coupled with electrochemical process has been performed using an in-house designed 

cell.
 

The XRD patterns obtained during the first oxidation/reduction process of the 

Na/Na0.44MnO2 cell in the restricted 2θ degree region from 32-40° are displayed in Figure 4b. 
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The diffraction patterns are structurally close associated with the voltage plateaus from the 

beginning of Na extraction process, and each step is distinguished by different colors in 

relation to the initial curve of the CV measurement (Figure 4a). During the first charge 

process, most of the diffraction peaks of NSG-Na0.44MnO2 shift to higher 2θ angle, indicating 

that the extraction of Na
+
 ions from the structure would lead to the decrease of the lattice 

parameters. The peak intensity changes due to the two-phase reaction. During the following 

discharge process, the diffraction peaks shift back in a very symmetrical way. The peaks of 

the same voltage, for both charge and discharge, locate in the same 2θ position with little 

change in intensity. It is interesting to see that the peaks for the planes which are 

perpendicular, such as (0 10 0), and are nearly perpendicular, such as (1 11 0), to b axis, show 

obviously bigger shift than the others. This means that the expansion and contraction of the 

lattice during the Na extraction / insertion are along the b axis. All these appearances indicate 

a highly reversible process of the extraction / insertion of Na
+
 ions. Based on the in-situ XRD 

results, the charge/discharge process does not lead to any new phases, and NSG-Na0.44MnO2 

cathode material has excellent reversibility, which proves again the conclusions from the CV 

measurement.  

Considering the detrimental impact of the specific particle morphologies on the high rate 

discharge and capacity retention, we have investigated the rate and long-term cycling 

performances of the synthesized material. The discharge rate capability of the two Na0.44MnO2 

cathodes is shown in Figure 5a. The cells were cycled at various charge and discharge rates 

ranging from 0.1 to 10 C (1 C is defined as 120 mA g
-1

) in a voltage range of 2.0 - 4.0 V. It 

can be observed that NSG-Na0.44MnO2 exhibits much better rate performance than 
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SG-Na0.44MnO2, especially at high rate. Specially, NSG-Na0.44MnO2 delivers a discharge 

capacity of 96 mAh g
-1

 at current density 10 C, which is actually 86 % of the capacity (112 

mAh g
-1

) at 0.1 C. Strikingly, a capacity of about 112 mAh g
-1

, same as the initial capacity, 

can be recovered when the current density returns to 0.1 C after the high rates test. These 

results suggest that NSG-Na0.44MnO2 electrode can fully afford rapid charge and discharge. 

Generally, Na
+
 ions insertion into and extraction from oxide hosts are considered with poor 

kinetics, compared with their Li-ion analogues due to the much larger size of Na
+
 ions than 

Li
+
 ions and 1D diffusion pathway of Na

+
 ions for the orthorhombic Na0.44MnO2, but this is 

not the case of the material synthesized in this work. The good rate capability of the 

NSG-Na0.44MnO2 electrode was also confirmed by electronic conductivity measurement. The 

bulk electronic conductivity of NSG- Na0.44MnO2 sample is 7.7×10
-5

 S cm
-1

 which has 

improved around one or two orders of magnitude comparing to the result of SG-Na0.44MnO2 

sample (5×10
-6

 S cm
-1

). In summary, the relatively high rate capability is related to the pure 

phase, stabilized structure, improved electronic conductivity, well controlled morphology 

with limited crystal growth along the [001] direction and less polarization of the Na0.44MnO2 

material obtained by the NSG method, as indicated by structure, morphology 

characterizations, conductivity measurement and CV analysis. The cycling stability of the two 

Na0.44MnO2 cathodes are tested under the current rate of 0.5 C, and the results are showed in 

Figure 5b. Superior to SG-Na0.44MnO2, which maintains 78.9 % initial capacity after 100 

cycles, NSG-Na0.44MnO2 presents excellent capacity retention, with no more than 2.2 % 

capacity loss after 100 cycles (from 108 mAh g
-1 

in the first cycle decreases to 105 mAh g
-1

 in 

the 100
th
 cycle), almost unnoticeable for the plot. The slight 3 mAh g

-1
 capacity decrease may 
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be ascribed to the electrolyte degradation, or the strain caused by Jahn-Teller distortion and 

the structure degradation upon cycling [38]. Further study is needed to fully understand these 

subtle yet critical phenomena. Nevertheless, it is obvious that the sodium (de)-intercalation in 

NSG-Na0.44MnO2 shows much better reversibility than SG-Na0.44MnO2. The better 

crystallinity and homogenous particle morphology could be responsible for that.  

The initial different discharge profiles of the NSG-Na0.44MnO2 electrodes were shown in 

Figure 5c. The data were obtained by testing the electrodes at the same charge current density 

of 0.2 C, but discharged at 0.2, 2 and 5 C, respectively. It delivers reversible discharge 

capacities of 112, 111 and 110 mAh g
-1

, respectively. Agree with the CV plots, six voltage 

plateaus can be viewed. With increasing the discharge current density, the material still retains 

high capacities, although the discharge voltage profiles slightly shift to lower voltage. This 

behavior can affect the energy density of the NIBs using Na0.44MnO2 as active material. 

However, no obvious voltage decay is found when the current density changes from 2 to 5 C. 

Compared the rate capability of NSG-Na0.44MnO2 (based on Figure 5a) with the literature 

reported Na0.44MnO2 materials (Figure 5d) synthesized by solid state reactions (SS), sol-gel 

routes (SG), polymer-pyrolysis (PP) methods [10, 22, 25, 29, 39-42], our results are evidently 

encouraging. To the best of our knowledge, this material exhibits by far the best performance 

in the case of high rate capability and excellent cycling stability for Na
+
-ions storage. The 

high discharge capacity and power density, significant high rate capability and the low cost of 

the Na0.44MnO2 nanoplate make it practically applicable in large power devices and EVs. 

4. Conclusions 
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In summary, the pure monocrystal Na0.44MnO2 nanoplate was synthesized by the 

template-assisted sol-gel method and applied as cathodes for sodium
 
ion batteries. The 

material shows high crystallinity and homogeneous nanoplate morphology. The lamellar 

structure Na0.44MnO2 material, owning to well distributed channels and controlled 

morphology with limited crystal growth along [001] direction, can provide a mechanically 

stable construction corresponded with short diffusion path for Na
+
 ions insertion/extraction. 

Electrochemical performance revealed the obtained Na0.44MnO2 nanoplates exhibited 

excellent reversibility, outstanding high rate capability (96 mAh g
-1

 at 10 C) and remarkable 

cycling stability (less than 2.2 % loss in 100 cycles at 0.5 C), which are much better than 

other previously reported Na0.44MnO2 compounds in the term of capability and cycling 

stability. The as-prepared Na0.44MnO2 nanoplates represent a promising cathode material for 

high power NIBs. 
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Fig. 1 SEM micrographs at the magnifications of (a) 2kx, (b) 50kx and (c) FIB-SEM 

micrograph for the prepared NSG-Na0.44MnO2 material. (d) TEM image of an individual 

NSG-Na0.44MnO2 particle. (e) HRTEM image and (f) SAED pattern of a monocrystalline 

Na0.44MnO2 nanoplate. SEM micrographs of the SG-Na0.44MnO2 material under the 

magnifications of (g) 2kx and (h) 50kx. 

Fig. 2 XRD patterns of SG-Na0.44MnO2 and NSG-Na0.44MnO2 samples (a) and corresponding 

structure schematic illustration (b) of the orthorhombic Na0.44MnO2 in the Pbam space group 

(view perpendicular to the ab plane). 

Fig.3 Schematic illustration for crystal growth of nanorod and nanoplate (a); the structural 

formation of nanoplate particles (b).  

Fig. 4 Cyclic voltammogramms of (a) NSG-Na0.44MnO2 electrode between 2.0 and 4.0 V at a 

potential sweep rate of 0.1 mV s
-1

. In situ evolution of the XRD pattern (b) recorded at 0.02 

mV s
-1

 voltage sweep rate of NSG-Na0.44MnO2 between 2.0 and 4.0 V. 

Fig. 5 (a) Rate capabilities of the as-prepared SG-Na0.44MnO2 and NSG-Na0.44MnO2 

nanoplates. (b) Cycling behaviors of the SG-Na0.44MnO2 and NSG-Na0.44MnO2 nanoplates at 

0.5 C for 100 cycles. (c) The discharge profiles of NSG-Na0.44MnO2 at 0.2, 2 and 5 C (The 

charge current rate is fixed at 0.2 C). (d) Comparison in the rate performance of the  

NSG-Na0.44MnO2 with the literature reports for the same materials prepared by solid state 

reactions (SS) [22, 41], sol-gel routes (SG) [29, 42] and polymer-pyrolysis (PP) method [10]. 
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Highlights 

 A template assisted sol-gel method was used to prepare Na0.44MnO2 nanoplates for 

sodium ion batteries. 

 The materials showed high purity, homogeneous size distribution and excellent 

electrochemical performance, especially the rate capability. 

 The as-prepared nanoplates morphology can limit the crystal growth along [001] direction, 
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can provide a mechanically stable construction corresponded with short diffusion path for 

Na
+
 ions insertion/extraction. 

 

 

Graphical abstract 

 

 

The Na0.44MnO2 materials were achieved with a template assisted sol-gel method. The 

prepared materials showed high crystallinity, pure phase and homogeneous size 

distribution. The materials exhibited superior electrochemical performance in both 

rate capability and cycling stability due to the limited crystal growth along [001] 

direction. 

 

 




