Department of NanoEngineering		(858) 956-9058	
University of California San Diego		miz016@eng.ucsd.edu	
La Jolla, California 92093-0448		http://smeng.ucsd.edu	
Profession Experience:			
University of California, San Diego	Project Scientist	2020Now	NanoEngineering
University of California, San Diego	Postdoctoral Scholar	20182020	NanoEngineering
Education Background:			
University of California, San Diego	Ph.D.	20122017	Materials Sci. & Engr.
Chinese Academy of Sciences	M.S.	20092012	Materials Chem. &Phys.
NanKai University	B.S.	20052009	Physics

Research Interest and Technical Skills:

- Reaction mechanism study and novel synthesis route of electrode materials with high energy density for a. advanced and post lithium-ion batteries
- Materials diagnosis through multiple advanced characterizations such as SXRD, STEM/EELS, XPS, soft b. XAS, TXM, plasma-FIB, etc.
- Ab initio simulation of electronic and ionic transport properties of materials for energy storage and C. conversion

Research Experience:

2020–present	Scientist Research on Project of Developing High Energy Cathode Materials for			
	Next-generation Li-ion Batteries from Umicore, University of California, San Diego			
	 Composition and morphology design to identify the dependence of these factors on bulk structure reversibility and interfacial reactions with electrolytes Engineering strategies development including elemental substitutions, surface coatings, and novel electrolyte compositions to produce the modified materials at large scale with energy 			
	density exceeding 350 Wh/kg at cell level			
2018-present	t Postdoctoral Research on Project of Co Free Cathode Materials and Their Novel Architectures			
	from DOE, University of California, San Diego			
	New electrolyte formulation to suppress degradation in LNMO/graphite full cells			
	Feasibility of a Co free Li-ion cell with energy density exceeding 600 Wh/kg at cathode level			
2012-2019	Graduate Research on Project of Advanced Battery Materials Research (BMR) from DO			
	University of California, San Diego			
	Morphology controlled synthesis for Li-rich material			
	Gas-solid interface modification of oxygen activity in layered oxide cathodes			
2015–2018	2018 Graduate Research on Project of Development of Advanced Li Rich xLi ₂ MO ₃ -(1-x)Li			
	Composite Cathode for High Capacity Li Ion Batteries from AFOSR/AOARD, University of			
	California, San Diego			
	Construction of atomistic models of layered composite cathode xLi2MO3-(1-x)LiMO2			
	Determination of the optimal chemical composition for layered composite cathode xLi2MO ₃ -			
	(1-x)LiMO2 and the optimal dopants for xLi2MO3-(1-x)LiMO2 (M=Ni, Co, Mn, Ti, Al, Mo, etc.)			
2015–2017	Graduate Research on Project of Robust Affordable Next Generation Energy Storage System			
	(RANGE) from ARPA-E, University of California, San Diego			
	1			

-- Demonstration of average voltage depression less than 95% of the Li-rich layered oxide after 100 cycles at room temperature

- 2015-2016 Research Internship on **Project of Advanced Short Term Research Opportunity Program**, Oak Ridge National Laboratory (ORNL)
 - -- In Situ Microscopy for Lithiation of SnS2
 - -- STEM/EELS study on oxygen evolution reaction activity of layered catalyst
- 2011–2012 Research Assistant on **Project of Next Generation Batteries Material from Natural Science Foundation**, Chinese Academy of Sciences
 - -- Gradient structure based on spinel LiNi0.5Mn1.5O4
 - -- Microwave approach synthesis

Selected Peer-Reviewed Journal Publications: († authors with equal contribution, * corresponding author)

- 1. <u>M. Zhang</u>⁺, B. Qiu⁺, et al, "*High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides*", Matter, 2020, 4, 164
- Y. Li, M. J. Zuba, <u>M. Zhang</u>^{*}, Y. S. Meng^{*}, et al, "Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering", Energy Storage Materials, 2020, 35, 99
- 3. B. Qiu⁺, <u>M. Zhang</u>⁺, et al, "Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries", Cell Reports Physical Science, 2020, 1, 100028
- 4. W. Li, Y. Cho, <u>M. Zhang</u>^{*}, Y. S. Meng^{*}, et al, "Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries", Journal of Power Sources, 2020, 473, 228579
- 5. E. Zhao⁺, <u>M. Zhang</u>⁺, J. Liu, X. Yu, Y. S. Meng, et al, "Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides", Energy Storage Materials, 2020, 24, 384
- 6. H. Chung, A. Grenier, <u>M. Zhang</u>^{*}, Y. S. Meng^{*}, et al, "Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries", Nano Research, 2019, 12, 2238
- 7. C. Fang, J. Li, <u>M. Zhang</u>, Y. S. Meng, et al, "Quantifying inactive lithium in lithium metal batteries", Nature, 2019, 572, 511
- H. Hirsh, M. Olguin, H. Chung, <u>M. Zhang</u>^{*}, Y. S. Meng^{*}, et al, "Meso-structure controlled synthesis of sodium iron-manganese oxides cathode for low-cost Na-ion batteries", Journal of The Electrochemical Society, 2019, 166 (12), A2528
- M. Zhang, H.D. Liu, Z. Liu, C. Fang, and Y. S. Meng, "Modified coprecipitation synthesis of mesostructurecontrolled Li-rich layered oxides for minimizing voltage degradation", ACS Applied Energy Materials, 2018, 1(7), 3369
- 10. A. Singer, <u>M. Zhang</u>, S. Hy, et al, "Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging", Nature Energy, 2018, 3, 641
- T. A. Wynn, C. Fang, <u>M. Zhang</u>, H. Liu, D. M Davies, et al, "Mitigating oxygen release in anionic-redoxactive cathode materials by cationic substitution through rational design", Journal of Materials Chemistry A, 2018, 6, 24651
- 12. J. Alvarado, M. A. Schroeder, <u>M. Zhang</u>, O. Borodin, et al, "*A carbonate-free, sulfone-based electrolyte for highvoltage Li-ion batteries*", Materials Today, 2018, 21(4), 341
- 13. <u>M. Zhang</u>⁺, K. Yin⁺, et al, "In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO₂ nanotubes as anodes for lithium-ion batteries", Journal of Materials Chemistry A, 2017, 38, 20651
- 14. <u>M. Zhang</u>⁺, B. Qiu⁺, et al, "Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries", Chemistry of Materials, 2017, 29(3), 908
- 15. K. Yin⁺, <u>M. Zhang</u>⁺, et al, "The formation of a self-assembled framework during lithiation of SnS₂, monitored by in situ microscopy", Accounts of Chemical Research, 2017, 50 (7), 1513

- 16. X. Wang, <u>M. Zhang</u>, et al, "New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM", Nano Letters, 2017, 17 (12), 7606
- 17. B. Qiu⁺, <u>M. Zhang</u>⁺, et al, "Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries", Nature Communications, 2016, 7, 12108
- M. Zhang, A.C. MacRae, H.D. Liu, Y.S. Meng, "Investigation of anatase-TiO₂ as an efficient electrode material for magnesium-ion batteries", Journal of the Electrochemical Society, 2016, 163(10), A2368
- S. Hy, H.D. Liu, <u>M. Zhang</u>, D. Qian, B.-J. Hwang, Y. S. Meng, "Performance and design considerations for the lithium excess layered oxide positive electrode materials for lithium ion batteries", Energy & Environmental Science, Advance Article, 2016, 9(6), 1931
- 20. Y. Shi, <u>M. Zhang</u>, D. Qian and Y. S. Meng, "Ultrathin Al₂O₃ coatings for improved cycling peroformance and thermal stability of LiNio.5Coo.2Mno.3O₂ cathode material", **Electrochemica Acta**, 2016, 203(10), 154
- 21. <u>M. Zhang</u>, Y. Liu, Y. Xia, B. Qiu, J. Wang, Z. Liu, "Simplified co-precipitation synthesis of spinel LiNi_{0.5}Mn_{1.5}O₄ with improved physical and electrochemical performance", Journal of Alloys and Compounds, 2014, 598, 73
- 22. Y. Liu, <u>M. Zhang</u>, Y. Xia, B. Qiu, Z. Liu, X. Li, "One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li ion batteries", Journal of Power Sources, 2014, 256, 66.
- 23. J. Wang, <u>M. Zhang</u>, C. Tang, Y. Xia, Z. Liu, "Microwave-irradiation synthesis of Li_{1.3}Ni_xCo_yMn_{1-x-y}O_{2.4} cathode materials for lithium ion batteries", Electrochemica Acta 2012,80,15
- 24. <u>M. Zhang</u>, J. Wang, Y. Xia, Z. Liu, "Microwave synthesis of spherical spinel LiNi_{0.5}Mn_{1.5}O₄ as cathode material for lithium-ion batteries", Journal of Alloys and Compounds, 2012, 518, 68

Patents and Book Chapter:

- 1. <u>M. Zhang</u>, B. Qiu, Y. S. Meng, et al. "Structural and voltage recovery in Li-rich layered oxides", provisional US patent, in application
- 2. Y. S. Meng, <u>M. Zhang</u>, et al. "Lithium excess cathode material and co-precipitation formation method", (PCT/US2016/062067)
- 3. Z. Liu, <u>M. Zhang</u>, et al. "Microwave synthesis of spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries", ZL201110131062.2
- 4. Z. Liu, <u>M. Zhang</u>, et al. "Synthesis of anion-doped transitional metal oxide as cathode materials for lithium-ion batteries", ZL201110131082.X
- 5. Z. Liu, <u>M. Zhang</u>, et al. "Synthesis of cathode materials for lithium-ion batteries using transitional metal carbonate as precursor", ZL201110214273.2
- I.-H. Chu⁺, <u>M. Zhang⁺</u>, S. P. Ong, and Y. S. Meng, "Handbook of materials modeling-battery electrodes, electrolytes, and their Interfaces", Edited by: W. Andreoni and S. Yip (Springer Nature Switzerland AG 2018)

Conferences / Presentations:

- 1. <u>M. Zhang</u>, H.D. Liu, C. Fang, Y. S. Meng, "*Minimize the voltage degradation in Li-rich layered oxide cathode materials by morphology control*" Materials Research Society Meeting, 2016, Boston, U.S., Oral presentation.
- 2. <u>M. Zhang</u>, A. C. MacRae, Y. S. Meng, "Investigation of anatase-TiO₂ as an efficient electrode material for magnesium-ion batteries" Electrochemical Society Meeting, 2016, San Diego, U.S., Poster presentation.
- 3. <u>M. Zhang</u>, H.D. Liu, C. Fang, Y. S. Meng, "Morphological and surface structural changes during electrochemical cycling in Li-rich layered oxides for next generation Li-ion batteries" Materials Research Society Meeting, 2017, Phoenix, U.S., Oral presentation.
- 4. <u>M. Zhang</u>, H.D. Liu, Y. S. Meng, "Structure and voltage recovery driven by defects elimination in Li-rich layered oxide cathode materials" Electrochemical Society Meeting, 2018, Seattle, U.S., Oral presentation.

- 5. <u>M. Zhang</u>, M. Olguin, T. Wynn, Y. Li, Y. S. Meng, "*Advanced characterization tools for probing anionic redox in layered cathode materials*" International Battery Association Meeting, 2019, San Diego, U.S., Poster presentation.
- 6. <u>M. Zhang</u>, Y. S. Meng, "Toward the stable and reversible lattice oxygen redox in Li-rich layered oxides" Electrochemical Society Meeting, 2019, Atlanta, U.S., Postdoctoral Associate Research Award talk.
- 7. <u>M. Zhang</u>, Y. S. Meng, "Development of cryogenic techniques for characterizing energy storage materials in *electrochemical process*" Microscopy & Microanalysis Meeting, 2020, Virtual Meeting, U.S., Oral presentation.
- 8. <u>M. Zhang</u>, Y. S. Meng, "*Three-dimensional imaging and interface analysis of battery materials via plasma FIB-SEM*" Electrochemical Society Meeting, 2020, Virtual Meeting, U.S., Oral presentation.
- 9. <u>M. Zhang</u>, Y. S. Meng, "Advance characterization tools to study and develop stable anionic redox for high-energy rechargeable batteries" Materials Research Society Meeting, 2020, Virtual Meeting, U.S., Oral presentation.

Selected Awards and Synergistic Activities:

- a. Outstanding Programs in "100 Projects" of Creative Research, Nankai University, 2009
- b. Merit Student, Chinese Academy of Sciences, 2009-2010
- c. Vice President of Chinese Student Association, Ningbo Institute of Materials Technology and Engineering, 2009-2012
- d. Voluntary Work for 13th US-CHINA Electric Vehicle and Battery Technology Information Exchange, 2018, San Diego and International Battery Association Meeting, 2019, San Diego
- e. Battery Division Postdoctoral Associate Research Award of The Electrochemical Society (ECS), 2019
- f. Chair, Battery and Energy Technology Joint General Session, Electrochemical Society Meeting, 2019, Atlanta
- g. Symposium Organizer, Battery Student Slam, Electrochemical Society Meeting, 2021, Chicago
- h. Peer Reviewer for Energy & Environmental Science, Joule, ACS Nano, Chemistry of Materials, Journal of Materials Chemistry A, Nano Energy, Carbon, Journal of Power Sources, ACS Applied Materials & Interfaces, Electrochemica Acta, RSC Advances, etc.

Teaching Experience and Guest Lecture:

- a. Teaching Assistant for Energy Storage and Conversion Nano 164 (undergrad) Nano261 (graduate)
- b. Teaching Assistant for Thermodynamics of Materials Nano148 (undergrad)
- c. Teaching Assistant for Advanced Characterization for Nanosystems Nano111 (undergrad) Nano230 (graduate)
- d. Guest Lecture on "First principles computation demo and Review", "Advanced characterization for energy devices", "The First Law of Thermodynamics", "The Statistical Interpretation of Entropy", "Phase Equilibrium in a one-C System", "Phase Diagrams of Binary Systems", "Phase Transformation in Ceramics", "Introduction to X-ray Generation and Scattering Theory", "Introduction to Electron Energy Loss Spectroscopy", "Introduction to National Lab Facilities and Proposal Preparation", etc.