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ABSTRACT OF THE DISSERTATION

Structure-function Investigation of Operando Nanostructured
Materials Using Coherent X-ray Diffractive Imaging

by

Andrew Ulvestad

Doctor of Philosophy in Physics

University of California, San Diego, 2015

Professor Oleg Shpyrko, Chair
Professor Shirley Meng, Co-Chair

Nanostructured devices promise to help solve grand challenges of our time,

including renewable energy generation, storage, and mitigating climate change.

Their power lies in the particular influence of the surface on the total free en-

ergy when dimensions approach the nanoscale and it is well known that different

sizes, shapes, and defects can drastically alter material properties. However, this

strength represents a considerable challenge for imaging techniques that can be

limited in terms of sample environments, average over large ensembles of particles,

and/or lack adequate spatiotemporal resolution for studying the relevant physical

processes. The focus of this thesis is the development of in situ coherent X-ray

xvii



diffractive imaging (CXDI) and its application in imaging strain evolution in bat-

tery cathode nanoparticles. Using in situ CXDI, the compressive/tensile strain

field in the pristine state is revealed, and found to be linked to a particular con-

centration of strain inducing Jahn-Teller ions. The evolution of strain during the

first charge/discharge cycle shows that the cathode nanoparticle exhibits phase

separation. Using the 3D strain field, the strain field energy is calculated and

shows interesting hysteresis between charge and discharge. Strain evolution dur-

ing a disconnection event, in which the cathode nanoparticle is no longer able to

exchange electrons and ions with its environment, reveals the formation of a poorly

conducting interphase layer. Finally, strain fields were used to study dislocation

dynamics in battery nanoparticles. Using the full 3D information, the dislocation

line structure is mapped and shown to move in response to charge transfer. The

dislocation is used as a way to probe the local material properties and it is discov-

ered that the material enters an “auxetic”, or negative Poisson’s ratio, regime.

xviii



Chapter 1

Introduction

1.1 The case for nanostructured materials

Nanoparticles are widely used in materials science across diverse areas in-

cluding energy storage materials [117], catalysts [74], and sensors[12]. Their desir-

able characteristics, brought on by decreasing the particle size to the nanoscale,

include record catalytic activities [113], improved lithiation kinetics [60], and longer

lifespans [22]. Nanoparticle properties are primarily functions of their size, shape

and surface facets, and support. For example, shrinking the size of LiFePO4 cath-

ode nanoparticles improves battery performance [135] while gold and platinum

nanoparticle catalytic performance is heavily dependent on the support selection

[62, 129]. It was also recently shown that surface facets dramatically impact the

performance of LiNi0.5Mn1.5O4 battery cathodes [60]. Thus, in order to truly un-

derstand the structure-function relationship, techniques with single particle sen-

sitivities must be employed. Understanding the single particle structure function

relationship is further complicated by the additional components in working de-

vices (e.g. binders, additives in batteries) that can change the physics of relevant

reaction and the fact that the reactions we aim to optimize (e.g. charge transfer for

batteries) occur under far from equilibrium conditions. For example, it was shown

that thin films of LiNi0.5Mn1.5O4 are intrinsically stable under high voltage cycling

but that electrochemically inactive components contribute to degradation [21]. In

LiFePO4 cathode nanoparticles, there continues to be debate over two-phase co-

1
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existence during the far from equilibrium process of (dis)charging in part because

of disagreement between ex-situ and in-situ results [82]. It is thus not enough to

study single particles: they must also be studied in their operating environment

and ideally under operating conditions.

Motivated by this challenge, researchers are working on several techniques

capable of probing single nanoparticles in situ and under operating conditions.

In situ electron microscopy was used to understand both the ion distribution in

LiFePO4 cathode nanoparticles [64] and the phase transition in a silicon/carbon

anode [131]. Traditional X-ray microscopes are also being employed both in situ

and under operando conditions [134]. For a recent review please see [90]. While the

aforementioned techniques have certainly improved our understanding on nanopar-

ticles in reactive environments, there are several desirable quantities, the first and

foremost strain information, that are difficult to obtain. Strain is known to affect

thermodynamic properties at the nanoscale [17, 34, 56, 63]. Strain field information

also reveals the location and type of defects that are present, which can signifi-

cantly alter material properties [20, 118]. This information is thus highly desirable

to understand and engineer the structure function relationship in nanoparticles.

Finally, many of the previously mentioned microscopes yield only 2D information

and are limited to specific sample environments and thicknesses that may not be

entirely representative of the real system. Coherent X-ray diffractive imaging is

a relatively new tool that can offer 3D strain field evolution in buried nanoparti-

cles in reactive environments. Motivated by the potential for new understanding,

we aimed to develop this technique to investigate nanostructured cathodes under

operating conditions. First, we review X-rays and the origin of their desirable

properties.

1.2 X-rays

Since their discovery in 1895, X-rays have been used as probes of various

types of matter by physicists, chemists, physicians, and many others [6]. Their

absorption ∼ Z4 where Z is the atomic number of the element, which is why bone
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Figure 1.1: Definition and application of various parts of the electromagnetic

spectrum.

is visible while skin and tissue are not. X-rays are typically defined as the part

of the electromagnetic spectrum having an energy between 100 electron volts (eV)

and 100 kiloelectron volts (keV) (see Figure 1.1) with corresponding wavelengths

(λ) on the order of .01–10 nanometers, as given by energy-momentum relation for

light: E = hc/λ, where h is Planck’s constant and c is the speed of light. Hard

x-rays generally refer to energies above 5 keV and are so-called due to their high

penetrating power. As we will see later, this also makes them difficult to focus

and led to the advent of “lensless” diffraction microscopy. Their high penetrat-

ing power makes them ideal probes for studying operating devices in which the

crystal of interest is often buried in other materials [35]. In the case of batteries,

which will be discussed later in greater detail, these include a stainless steel casing,

lithium metal, organic electrolyte, separator, conductive agent, and a binder. A

corollary to hard x-rays’ high energy is their short wavelength. This is important

when it comes to imaging, since the best possible resolution is directly propor-

tional to the wavelength. This makes hard x-rays ideal probes for crystals, defined

by a repeating structure, which typically have atomic spacings on the order of

nanometers.

When these waves interact with matter three things can happen [6]: 1) the

X-ray can be absorbed and eject an electron (photo absorption) which is harmful

and known as ionizing radiation. This is used for x-ray spectroscopy. 2) The X-ray
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λ

E
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Figure 1.2: Plane polarized electromagnetic radiation. An electromagnetic wave

contains both the electric and magnetic field.

can be scattered inelastically (energy not conserved), which is known as Compton

scattering. 3) The x-ray can be scattered elastically (Rayleigh scattering) and

lose no energy, which means the scattered x-ray has the same frequency as the

incoming x-ray. In order to account for both transmission and absorption, one

needs the wave equation for X-rays.

1.3 Scattering by one electron

As alluded to previously, X-rays are a form of electromagnetic radiation

which can be described as waves (see Figure 1.2). Electromagnetic waves propagate

according to Maxwell’s equations, which can be reduced to the wave equation

for both the E and B fields. There is a wonderful derivation in Chapter 1 and

Appendices A-B of of [6] of the scattering of electromagnetic radiation by electrons,

molecules, and crystals, so only key results will be repeated here. The differential

scattering cross-section of an electromagnetic wave by a free electron is

(
dσ

dΩ

)
= r20 |̂εεε · ε̂εε

′|2. (1.1)

This measures the strength of the outgoing radiation scattered in a certain direction

given a quantity of incoming radiation; r0 is the classical electron radius, which is
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the fundamental length scale in the problem; ε̂εε is the incident polarization while ε̂εε is

the polarization of the scattered beam (measured at the location of the observer).

It is important to note that this equation is independent of X-ray energy, and that

it has implications for optimal geometry of different types of X-ray experiments.

Synchrotrons produce X-rays with linear polarization in the horizontal plane of the

synchrotron. Here, so as to not lose flux from the polarization factor, scattering

experiments should be conducted in the vertical plane.

1.4 Scattering by many electrons

One builds up the scattering from crystals by first considering scattering

from atoms then scattering from molecules. The electron distribution in an atom

is specified by a number density ρ(rrr), and the scattered radiation is simply the

superposition of the contribution from the different scatterers. One wants to know

how the volume element at the origin adds with another element at some position

rrr. The electron density volume element picks up an additional phase from the

additional path length difference. From geometry (see Figure 1.3), it is seen that

the phase difference between the scattered wave from a volume element around the

origin and one around rrr is the sums of two terms. The resulting phase difference

is thus

∆φ(rrr) = (kkk − kkk′) · rrr = QQQ · rrr. (1.2)

QQQ is known as the wave vector transfer or scattering vector. We argue that a

volume element drrr at rrr contributes −r0ρ(rrr)drrr to the scattered field with phase

factor exp[iQQQ · rrr]. The total scattering for an atom is obtained by integrating over

all the scatterers:

−r0
∫
ρ(rrr) exp[iQQQ · rrr]drrr (1.3)

which is nothing but the Fourier transform of the electron density. This is impor-

tant for later when discussing phase retrieval algorithms. The intensity measured
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Figure 1.3: Scattering geometry in a typical experiment. The incident and out-

going vectors are drawn and the path length difference is derived.

on the detector is proportional to the absolute value squared of the Fourier trans-

form of the electron density. A molecule is composed of atoms and hence the

scattering is a sum over the j atoms

Fmol(QQQ) =
∑
j

fj exp[iQQQ · rrr] (1.4)

Finally, scattering from a crystal, which is what experiments actually do, requires

the introduction of lattice basis vectors and reciprocal lattice basis vectors.

1.5 Crystallography

Crystals are periodic in space, or made up of units (unit cells) that repeat

over and over again. Crystals are formed by specifying both a lattice (where the

unit cells are) and a basis (the structure of the unit cell). For example, a complex

molecule can sit at each lattice point. Consider a simple cubic crystal and the

typical derivation of Bragg’s law as shown in Figure 1.4. The structure is a crystal

and hence has uniform spacing between the blue dots, which could represent atoms

or other more complicated structures. The condition for constructive interference

is
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Figure 1.4: Geometric derivation of Bragg’s law. Constructive interference occurs

when the path length difference is an integer multiple of the wavelength.

nλ = 2dhkl sin θ, (1.5)

where dhkl has indices to represent the fact that in phase scattering can happen

from different sets of crystallographic planes. To figure out these planes, a real

space lattice is first chosen with basis vectors aaai, not necessarily perpendicular,

that can give the positions of all atoms or molecules when they are multiplied by

integers. These define the lattice vector

RRRn = n1aaa1 + n2aaa2 + n3aaa3 (1.6)

A given lattice has characteristic symmetries that lead to “natural” choices

for the basis vectors that minimize the volume of the unit cell (see Figure 1.5).

Bravais showed that in 2D there are 5 distinct types of lattice symmetries while

in 3D there are 14. The combination of the symmetry of the lattice RRRn with the

symmetry of the basis rrrj gives 230 possible space groups. Given a lattice and basis,

dhkl can be calculated. For example, the (d) spacings of a cubic lattice are
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Figure 1.5: Lattice and reciprocal lattice for a two dimensional crystal. The recip-

rocal lattice formulation is especially useful in interpreting the results of scattering

experiments.

dhkl =
a√

h2 + k2 + l2
(1.7)

where a is the lattice constant and (h, k, l) are the Miller indices. The Miller indices

define the plane from which the scattering occurs. The (h, k, l) plane is defined as

the plane closest to the origin that has intercepts (a1/h, a2/k, a3/l). For example,

the (1, 1, 1) planes are defined by having their intercepts at (1, 0, 0), (0, 1, 0) and

(0, 0, 1).

Now the position of any atom in the crystal is given by RRRn + rrrj, so the

scattering amplitude factorizes into the product of the “unit cell” and the “lattice”:

F crystal(QQQ) =
∑
j

fj exp[iQQQ · rrrj]
∑
n

exp[iQQQ ·RRRn]. (1.8)

On average, the phase in the exponential sums to zero unless the scattering vector

happens to fulfill

QQQ ·RRRn = 2πm (1.9)

with m an integer. In order to make the scattering condition more transparent,
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Figure 1.6: Geometric picture of the scattering condition. Intensity is located

at reciprocal lattice points. One sets kkki and kkkf by choice of sample and detector

position.

the reciprocal lattice is used. The reciprocal lattice basis vectors aaa∗j are defined

such that

aaai · aaa∗j = 2πδij (1.10)

and the points on the reciprocal lattice are specified by

GGG = haaa∗1 + kaaa∗2 + laaa∗3 (1.11)

where the h, k, l are the Miller indices mentioned previously. The lattice can be

represented by a periodic function and, provided it is sampled at greater than the

Nyquist frequency, all information can be reconstructed by a scattering experiment

[105]. Thus there is an intimate connection between a family of planes (h, k, l) in
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direct space andGGGhkl in reciprocal space. This then satisfies the previous condition

that all scattering add in phase when

QQQ = GGG (1.12)

which is known as the Laue condition. This is equivalent to Bragg’s law discussed

previously and has a simple geometric interpretation as shown in Figure 1.6. This

implies that scattering is located at discrete points in reciprocal space. These are

known as Bragg peaks and are very important as coherent imaging experiments

take place in reciprocal space. Thus, given a crystal we can construct a lattice

basis, then a reciprocal lattice basis, and then understand exactly where to look

for scattering signal. Finally, during all these derivations it was assumed that only

a single scattering event took place (kinematical scattering or the Born approxi-

mation).

1.6 Finite Crystals

So far we have assumed that crystals were infinite. However, real crystals

are finite and hence lead to what is known as “crystal truncation rods” or CTRs.

These occur due to the finite size of the crystal. The mathematical description is

actually rather simple. The density function is convolved with a step function to

represent the truncation. Fig. 5.12 in [6] is an excellent picture. It is important

for our measurements as we will see fringes due to the finite size and shape of our

crystal.

1.7 Coherence

So far we have assumed that the incoming X-ray was perfectly characterized

by a single wavelength λ. Real X-ray beams have a coherence length, which is the

distance over which two wavefronts that were in phase become exactly out of phase

(see Figure 1.7). The longitudinal coherence length is a measure of how long it
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Figure 1.7: Longitudinal coherence length is defined as the length over which two

waves that were in phase take to become π phase shifted.

takes two waves that were in phase at some time t to become out of phase. The

transverse coherence length is due to the finite size of the source, and is derived

considering two waves emitted with different trajectories.

1.8 Alternative derivation

The relationship between scattering and the Fourier transform can be de-

rived as in Pierre Thibault’s thesis [120]. Since we ultimately won’t worry about

polarization factors, the equation we have to solve is the scalar wave equation for

Ψ in a medium

∇2Ψ + k2n2Ψ = 0 (1.13)

where k = ω/c and n2 = c2εµ. ω, c, ε and µ are the frequency, speed of light,

electric permittivity and magnetic permittivity, respectively. n, also known as the

complex refractive index, can be defined as

n = 1 + δn = 1− δ + iβ

The real part (1 − δ) governs the x-ray phase velocity in the material while the

imaginary part (β) governs the absorption. n tends to deviate only slightly from



12

Figure 1.8: X-ray attenuation coefficient in water. The attenuation coefficient

determines the length over which the X-ray intensity falls to 1/e of its original

value.

unity for x-rays due to their high penetrating power and hence is written as 1+δn.

In free space, δn = 0 and we know the solution is just a traveling wave (Figure 1.2).

Note that the form of the equation in Fourier space is

(k2 − q2)Ψ̃ = 0 (1.14)

which tells us that all Fourier components with q 6= k are zero. We know this

result already from quantum mechanical energy conservation. It is also the result

that shows the only nonzero Ψ̃ occur at the Ewald sphere condition (|q| = k).

X-rays are still partially attenuated by matter, however. In order to under-

stand the absorption, we can start with a plane wave propagating in the z-direction

through a medium of refractive index n The intensity of the wave, I = |Ψ(z)|2, is

given by Ψ0e
−µz where µ = 2βk. This allows us to define the penetration depth

as the depth into which the material penetrates before falling to 1/e of its initial

intensity, or z = 1/µ. The x-ray penetration into water as a function of energy is

shown in Figure 1.8.

Let us now discuss 1.13 where we again have negligible matter interaction,

δn 6= 0, and we wish to relate the signal on our detector to the wave field just

after it is scattered. There are many ways to derive the result, including using the
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Kirchhoff-Fresnel integral and the Born approximation. We can derive the result

relevant to our experimental geometry by continuing in the “Fourier optics” for-

malism and this derivation proceeds as in Thibault thesis. Scattering experiments

involve measurement of the wave field in a plane transverse to its propagation di-

rection. As such, we can separate the transverse (r⊥) and parallel (z) components.

We then apply the Fourier transform to 1.13 only in these transverse directions,

which gives:

(−q2
⊥ + ∂2z + k2)Ψ̃ = 0 (1.15)

One can look up the solution to this equation, which is composed of a forward

and backward scattering wave. We are only concerned with the forward scattering

solution, which is

Ψ̃ = Ψ̃f exp

[
i
√
k2 − q2

⊥z

]
(1.16)

The wave evolution is then given at any further z as

Ψ = F−1Ψ̃ (1.17)

where F is the Fourier transform, F−1 is the inverse Fourier transform and now

Ψ is a function of r⊥ and z. In order to derive the expression for the diffraction

pattern in the “far-field”, we take the limit z →∞. Writing out the inverse Fourier

transform, we have

Ψ→ F−1Ψ̃ ∼
∫
d2qΨ̃(q) exp

[
ikz

(
q/k · r/z +

√
1− (q/k)2

)]
(1.18)

The only non-zero contribution comes when the phase is stationary, which implies

r⊥/z = q⊥/
√
k2 − q2

⊥. So when we measure in the direction u = r⊥/z the intensity

is

I(u) = |Ψ(zu)|2 ∼ 1

1 + u2
|Ψ̃(q⊥ = κu)|2 (1.19)

This is the well known result that the far-field intensity is proportional to the

square of the absolute value of the 2D Fourier transform. This leads naturally to

discussion of the phase problem and of diffraction microscopy.



Chapter 2

Coherent X-ray Diffractive

Imaging

2.1 Lensless imaging

In a diffractive imaging experiment, no lens is placed after the sample and

only the intensity of the scattered radiation is collected in the far field, typically

using a charge coupled device (CCD) camera. It was shown in the previous chapter

that this intensity is proportional to the Fourier transform

I(u) = |Ψ(zu)|2 (2.1)

The ultimate goal is to look at the sample in real space by recovering ρ(r).

For this to be accomplished, an inverse Fourier transform needs to be performed

and thus the Fourier space phases, in addition to the intensity measurements,

need to be recovered. Unfortunately our measurement does not accomplish this.

Fortunately, a computer can recover the phases in both Fourier and real space

provided the experiment meets several conditions.

14
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Figure 2.1: Sufficiently oversampled diffraction pattern taken at Sector 34-ID-C

from a gold nanoparticle. The degree of oversampling is practically given by the

number of pixels per fringe.

2.2 Oversampling

One condition that the recovered phases be unique is in the form of the

Shannon sampling theorem, which states that for any signal of frequency f to be

recovered with arbitrary accuracy the signal must be sampled with a frequency of

at least 2f . The pre factor of 2 is known as the oversampling ratio. Applying the

Shannon sampling theorem to the periodic crystal unit cell, as was first done by

Sayre [105], this implies that the diffraction pattern must be oversampled by at

least a factor of 2. A useful definition of the oversampling ratio in terms of the

computational array is

σ =
L

l
(2.2)

where L is the number of pixels in the array and l is the number of pixels in

the sample. In terms of diffraction images, the oversampling condition translates

into having at least 2 pixels per fringe on the CCD. For example, Figure 2.1

is oversampled by at least a factor of 3 because there are more than 3 pixels per

fringe. In principle only a factor of 2 is needed, but it appears a higher oversampling

speeds the convergence process in retrieving the Fourier space phases.
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Figure 2.2: Schematic of iterative phase retrieval The measured data is used as

the moduli of the Fourier space image.

2.3 Iterative phase retrieval

As discussed previously, only the intensity of the diffraction pattern is

recorded. In order to form the real space image, the phases in Fourier space

are needed. Provided the sample is finite (e.g. has compact support), is coherently

illuminated, and is smaller than the beam, then the following algorithms will con-

verge to a unique set of phases up to three inherent symmetries of the modulus of

the Fourier transform of an arbitrary function f(x).

The symmetries in the Fourier transform include a global phase offset eiφ0 ,

a complex conjugation plus inversion f(x) → f ∗(−x), and a rigid shift f(x) →
f(x+ x0). These are all seen to provide the same Fourier moduli. However, since

these do not affect the physical properties of the sample, they are not ultimately

important. They are important when performing multiple reconstructions and
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averaging the results, as will be shown.

The unique phases can be retrieved using a variety of computation algo-

rithms. The first such algorithm was the Gerchburg-Saxton algorithm introduced

in 1972 in electron microscopy, also known as the error reduction algorithm. In

this algorithm, the Fourier moduli are measured on the detector. A random set of

phases are used to perform the inverse Fourier transform. The object in real space

is only kept inside a finite support. The “projected” object is Fourier transformed

to Fourier space and the process is repeated. This process mathematically is:

|F | =
√
I (2.3)

Fi(q) = |F | exp[iφi] (2.4)

fi(x) = F−1F (q) (2.5)

fi(x) = fi(x)× h(x) (2.6)

Fi+1(q) = |F |∠ [Ff(x)i+1] (2.7)

fi+1(x) = F−1Fi+1(q) (2.8)

where I is the intensity measurement, φ is a set of phases that are initially random,

Fi is the best guess of the Fourier transform of the object, fi is the best guess of

the real space object, h(x) is the support function, and ∠ represents the imaginary

part of the function. The updated guess used at the beginning of the next iteration

is fi+1. This algorithm will in principle work given sufficient iterations but in

practice is prone to stagnation and slow convergence as monitored by the square

of the difference between the measured moduli and the computed moduli, which

is known as the error metric.

In order to combat stagnation and slow convergence, a different constraint

in real space was proposed by Fienup [48] that uses the following modification for

pixels that fall outside the support:

fi+1(x) = fi(x)− βfi−1(x) (2.9)

where β is the feedback parameter, typically close to unity. Pixels inside the

support still obey

fi+1(x) = fi(x)× h(x)
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Figure 2.3: Displacement field gives rise to an additional path length difference.

This path length difference affects the intensity measured in the diffraction pattern.

This is known as the Hybrid Input-Out (HIO) algorithm. Another significant ad-

vance came with the invention of the “shrink-wrap” algorithm, which dynamically

evolves the support h(x) [84]. All phase retrieval algorithms can be recast as

projection operators as shown in Thibault’s thesis [120].

2.4 A strained crystal

Until now, it has been assumed the finite crystal consisted of a perfect set

of repeating unit cells with all atoms at their equilibrium positions. In this case,

ρ(r) is real and the resulting Fourier moduli are centrosymmetric. In practice,

asymmetries are commonly seen in diffraction patterns that cause the real space

image to be complex, e.g.

ρ(r)→ ρ(r) exp[iχ] (2.10)

It turns out that crystal strain is responsible. Consider a displacement field u(r)

as shown in Figure 2.3 (adapted from [102]). The effect of displacement is to add

an additional path length difference or phase between the incoming and outgoing

radiation. It can be shown that this additional phase χ is equal to the projection

of the displacement field onto the measure reciprocal lattice vector

χ = G · u(r) (2.11)
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For example, if the 111 reciprocal lattice peak is measured then the phase in the

real space image will be χ = G111u111. G111 = 2π/d111 and d111 known from the

unit cell of the system. Thus at for every pixel the magnitude of the displacement

in the [111] direction is obtained. To obtain strain, the derivative with respect

crystallographic directions can be taken, e.g. ∂x111u111 is the compressive/tensile

strain in the [111] direction.

Now that the real space density and phases can be recovered and correctly

interpreted, it is time to discuss the principles of battery operation.



Chapter 3

Electrochemical Energy Storage

Devices

3.1 Introduction

Electrochemical storage devices or batteries are ubiquitous today as a con-

venient means of storing energy and power devices. Lithium is the primary inter-

calation ion used given its high electropositivity, or its tendency to easily give up

an electron. This leads to a high specific energy as shown in Figure 3.1 (adapted

from [117]), power, reversibility, and low self discharge. Energy density is the most

important metric for grid storage applications while transportation requires high

power. Using Ohm’s law

V = IR,

where V is the voltage, I is the current, and R is the resistance. Combined with

the definition of power, p,

p = IV,

it is seen that an equivalent definition of power is

p = V 2/R,

which shows that high voltage batteries are much more powerful than lower voltage

batteries due to the square scaling.

20
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Figure 3.1: Energy density for various types of batteries. Li-ion are much higher

than traditional lead acid batteries.

3.2 Working principles

During operation, batteries work as shown in the schematic Figure 3.2

(adapted from [24]) . The particular example shown is for Li ion but the prin-

ciples apply to all batteries. A battery is made up of an anode, electrolyte, and a

cathode. The anode is known as the negative electrode and is typically composed

of carbon. When the battery is fully charged, all Li ions reside in the anode. The

cathode, or positive electrode, is typically a form of transition metal oxide, for

example LiCoO2 in common laptop batteries. During charging, Li ions are pulled

out of the cathode and shuttled to the anode. During discharging, the reaction is

thermodynamically favorable and thus spontaneous, with Li ions flowing back to

the cathode and the electrons performing work on the external circuit.

The reaction at the cathode can be written as

aA+ ne− → cC, E0
C = X Volts. (3.1)

The reaction at the anode can be written as

bB − ne− → dD, E0
A = X Volts. (3.2)

These two reactions, each one of them called a “half-cell”, combine to give the

overall reaction

aA+ bB → cC + dD, (3.3)
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Figure 3.2: Schematic of battery operation. Lithium ions transfer from the cath-

ode to the anode in conjunction with charge transfer in an external circuit.
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which gives a corresponding change in the Gibbs free energy, ∆G, of

∆G = −nF∆E, (3.4)

where F is Faraday’s constant. Thus the thermodynamic driving force is linear

in both the difference in standard cell potentials and the moles of electrons trans-

ferred. The standard cell potentials are available in a table so given a combination

of elements one can compute the theoretical Joules per mol of reaction and thus

convert to theoretical energy density. Finally, the Nerst equation relates the mea-

surable cell voltage to the chemical difference across the electrochemical cell via

E = −RT
nF

log
a+i
a−i
. (3.5)

3.3 Degradation mechanisms

The X-ray technique discussed previously is adept at resolving displace-

ment and thus strain fields inside nanoparticles. The degradation mechanisms in

batteries that we will thus probe will be strain induced. The particular type of

battery we study will be Lithium ion, with a positive cathode of LiNi0.5Mn1.5O4.

This is what’s known as an intercalation compound. Ions intercalate and deinter-

calate into the cathode structure causing differential lattice expansion and strain.

The unit cell showing the position of all the different types of atoms in the spinel

structure is shown in Figure 3.3.

This cathode material also happens to crystallize as a spinel structure,

which is cubic with additional symmetries. The primary benefit of the spinel

structure are the three-dimensional diffusion pathways that allow easy lithium ion

transport into and out of the cathode. Despite these three-dimensional pathways,

strain evolution in these compounds is still a problem and limits their applicability

in electric vehicles [135, 24].
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Figure 3.3: The spinel intercalation cathode material LiNi0.5Mn1.5O4 and its unit

cell. The focus of the X-ray studies presented here will be on spinel structures.



Chapter 4

Nanoscale strain mapping in

battery nano structures

4.1 Abstract

Coherent x-ray diffraction imaging is used to map the local three dimen-

sional strain inhomogeneity and electron density distribution of two individual

LiNi0.5Mn1.5O4−δ cathode nanoparticles in both ex-situ and in-situ environments.

Our reconstructed images revealed a maximum strain of 0.4%. We observed dif-

ferent variations in strain inhomogeneity due to multiple competing effects. The

compressive/tensile component of the strain is connected to the local lithium con-

tent and, on the surface, interpreted in terms of a local Jahn-Teller distortion of

Mn3+. Finally, the measured strain distributions are discussed in terms of their

impact on competing theoretical models of the lithiation process.

4.2 Introduction

The reduction of battery capacity after many charge/discharge cycles is a

well known, yet poorly understood, phenomenon affecting battery performance in

a wide range of devices, including cell phones, computers, and electric vehicles

[93, 7, 85]. Even the ubiquitous lithium ion battery, which has several desirable

25
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properties [89], suffers under repeated cycling [11]. A detailed understanding of

the various processes thought to be involved would shed light on ways to increase

longevity and maintain capacity for a larger number of cycles in both current and

next generation batteries.

Possible mechanisms for the degradation of battery capacity include un-

wanted side reactions, electrolyte decomposition, surface film formation, active

material dissolution, and structural change [11]. Lithium ions are inserted and re-

moved from both electrodes as the battery is cycled. This causes volume expansion

and contraction in a wide range of materials, including spinels, and can occur in-

homogeneously, which induces strain in the active material particles [25, 57]. This

strain can cause irreversible cracking if it is above the threshold tensile strength of

the material [30, 144]. Cracking may lead to disconnection of some active material

from the conductive matrix. Strain clearly plays a key role in battery performance

and capacity retention.

Although other methods can provide globally averaged strain information

[46, 88], improvements in performance will likely require understanding strain at

the single particle level. Individual particle information leads, potentially, to a

better understanding of how the ensemble functions. If a particular size and shape

of particle exhibits minimal strain upon cycling, this can motivate improvement in

synthesis techniques to produce a cathode composed of this specific particle. From

a fundamental point of view, how phase transitions happen at the single particle

level remains unexplored.

Spinel materials are attractive candidates for cathodes in future commercial

batteries due to their specific energy, cost, availability, and electrode potential [41,

59, 89]. In general, the spinel structure enhances solid state lithium ion transport

because it is based on a three dimensional MO2 (M: transition metals) host. The

pathway relies on vacancies in the transition metal layer along the (111) direction.

In the LiM2O4 spinel structure, M cations occupy the octahedral site but 1
4

are

located in the lithium layer along the (111) direction, which leaves 1
4

of the sites in

the transition metal layer vacant [119]. Lithium ions then occupy the tetrahedral

sites in the lithium layer, and these sites share faces with the empty octahedral
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Figure 4.1: (a) Coherent x-rays are produced that illuminate the sample and

scatter to give (b) Coherent diffraction pattern from a particular cathode particle,

(c) Electron microscopy image of the pristine cathode powder, and (d) Unit cell

for the cathode material.

sites in the metal layer [139].

LiNi0.5Mn1.5O4−δ (LNMO) is the particular type of lithium oxide spinel

studied in this experiment where δ ≈ 0.1 indicates the degree of disorder and the

amount of oxygen vacancies. The unit cell for the disordered structure is shown in

Figure 4.1. X-ray diffraction (XRD) data, charge-discharge curves, and differen-

tial capacity (dQ/dV) plots are included in supplementary information uploaded

with this thesis (Fig. 1s, 2s (a) and 2s (b) respectively). XRD data demonstrates

that the structural properties agree with previously published data [137, 72], while

charge-discharge and differential capacity curves indicate good electrochemical per-
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formance and typical behavior [137, 72]. Strain in these materials can come from

a variety of sources, including inhomogeneous lithiation, Mn3+ ions undergoing

a Jahn-Teller distortion, and the lattice mismatch induced during the structural

phase transition that occurs upon cycling [72, 73]. Modeling the lithiation pro-

cess is typically done by considering spherical particles and assuming homogeneous

lithiation across shells [29]. Unfortunately, there are not many experimentally de-

termined strain distributions with which one can compare the model thus these

assumptions are left unchallenged.

Coherent x-ray diffractive imaging (CXDI) in Bragg geometry is a powerful

characterization technique for imaging local nanoscale lattice distortions [52, 53,

100]. CXDI is fundamentally different than other forms of microscopy. Instead of

using a lens to form the image of the sample, the method relies on highly coherent

sources of x-rays and the remarkable sensitivity of the scattered coherent beam to

the internal structure of the sample. In CXDI the coherently scattered light, or

coherent diffraction pattern as shown in Figure 4.1, is directly measured in the far

field on an area detector such as a Charge Coupled Detector (CCD). Since only

the intensities of the scattered wave can be measured, and not the relative phases

of the beams, computational phase retrieval algorithms are employed to generate

the image [48].

The strain in the sample will manifest itself in the diffraction pattern as

an asymmetry of the coherent diffraction intensities around the Bragg peak of the

lattice. An asymmetrical Fourier transform implies a complex real space image.

The amplitude will be directly interpreted as the density distribution of the sample,

while the phase can be shown to be directly related to a projection of the local

lattice distortion onto the Ghkl vector of the Bragg peak which was measured

[100, 23, 87, 96]. The strain is defined as the gradient of this displacement. In

principle, three independent Bragg reflections are necessary to construct the full

strain tensor. In this experiment, only the (111) reflection is measured and thus

only three components of the strain tensor can be computed.

The phase problem in CXDI is similar in nature to the famous phase prob-

lem of x-ray crystallography [105]. An important difference in CXDI is the ability
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to oversample the diffraction pattern of the sample in reciprocal space. This fact

allows many more constraints to be employed in the phasing retrieval process [48].

The basic concept in phase retrieval is to iterate between real and Fourier space,

using a Fast Fourier Transform (FFT), and apply the appropriate constraint in

each space. In Fourier space the constraint is simple: the amplitude is set to

the measured amplitude, which is the square root of the measured CCD intensity.

The real space constraint depends on what algorithm is chosen. Fienup’s Hybrid

Input-Output (HIO) [48] and the Error Reduction (ER) algorithm were used here.

This procedure is done iteratively until it converges on a solution, defined by the

error metric, which consists of amplitudes and phases for both spaces.

Several checks were done on the reproducibility and robustness of the phase

reconstructions. The diffraction data were centered via a sub-pixel shift to the

(h,k,l) of the center of mass of the measured intensity. Each individual particle

was reconstructed many times, each with a different set of random phases, and

what is shown is the average of at least 5 algorithm solutions. The phase at the

reconstructions center of mass is set to zero to remove any global phase offset.

The Fourier space error metric, which is the sum square of the deviations of the

reconstructed amplitudes from the measured, was on the order of 10−3. Finally, a

coordinate transformation back to the lab frame was performed to simplify com-

putation of the compressive/tensile strain.

4.3 Sample preparation

LiNi0.5Mn1.5O4−δ spinel materials with the disordered structure were syn-

thesized using the sol-gel method. The sol solution was prepared from the stoichio-

metric mixture of Ni(CH3COO)2·4H2O (Aldrich), Mn(CH3COO)2·4H2O (Aldrich),

and LiOH·2H2O (Aldrich) in distilled water. Aqueous solution of citric acid was

added drop-wise to the mixture with continuous stirring. The pH of the solution

was adjusted to 7 by adding an ammonium hydroxide solution. After gel forma-

tion at 70 ◦C with vigorous stirring, the precursor was further dried in a vacuum

oven overnight. The resulting gel precursors were decomposed at 500 ◦C for 12
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hours in air and then calcinated at 900 ◦C for 14 hours in air. Typical morphology

of the LiNi0.5Mn1.5O4−δ spinel materials with the disordered structure are shown

Figure 4.1. The average particle size was about 700 nm with a range of 400–1000

nm.

4.4 Experimental methods

The experiment was performed at 34-ID-C of the Advanced Photon Source

(Argonne National Laboratory). A double crystal monochromator was used to

select 8.919 keV x-rays with 1 eV bandwidth, and longitudinal coherence length

of about 0.7µm. Slits were used to select a coherent fraction of the beam from the

synchrotron that was then focused to about 1.0µm2. The pristine spinel powder

was mixed with an equal volume solution of duco cement and then held in place

on kapton tape for the ex-situ experiment (particle 1). For the in-situ experi-

ment (particle 2), a modified coin cell was used that does not change the sample

environment. The CCD detector was oriented at an arbitrary (111) direction cor-

responding to a 2θ of ≈ 18◦. The sample was then scanned across the beam until

a particle satisfying the Bragg condition illuminated the detector.

Coherent diffraction patterns were recorded for the rocking curve of the

(111) Bragg reflection by rotating the sample through the Bragg condition in in-

crements of about 0.01 degrees. In our experiment, a CCD detector with 20µm

pixel size was used to collect the 2D diffraction slice for 40 slices. Full 3D diffraction

patterns were then constructed by stacking these 2D frames together.

4.5 Results

The reconstructed real space maps of electron density, lattice displacement,

and compressive/tensile strain in the (111) direction for the two different particles

are shown in Figure 4.2. Particle 1 is approximately 700 nm in the largest dimen-

sion and imaged in an ex-situ environment. Particle 2 is approximately 400 nm in

diameter and imaged in an in-situ coin cell environment. The surface is drawn by
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specifying a constant value of electron density at 25% of the maximum. Particle

cross sections displaying the interior strain distribution are shown in Figure 4.3.

The resolution of these maps, calculated geometrically from the maximum mo-

mentum transfer we measure and verified by computation of the phase retrieval

transfer function [121, 23], is approximately 50 nanometers (nm). The root mean

square strain values are displayed in Table 4.1 for the center (150 nm sphere),

surface (150 nm shell), and entire particle.

4.6 Discussion

The reconstructed maps provide insight into the structure and strain of

pristine (fully lithiated, uncharged) LiNi0.5Mn1.5O4−δ cathode. The origin of strain

in these particles is not well understood and can come from a variety of effects. We

rule out particle-particle electrochemical interaction because measurements were

made at open circuit voltage (O.C.V.) in which the particles do not exchange

lithium with their neighbors, or we would observe current flow. There are residual

strains from the manufacturing of these particles but we expect them to be small

based on our atomic resolution microscopy image which shows well aligned atomic

columns.

In spinel materials, inserting lithium expands the lattice constant, while

removing lithium compresses the lattice constant. Provided this is the dominating

effect in the strain distribution, the compressive/tensile component of the strain

then represents a map of lithium dense and lithium sparse regions. We see in

Figure 4.2 that the strain is not homogeneous over the surface of either particle,

which would support the so-called phase field models of lithium insertion [109] and

not favor bulk diffusion limited “shrinking core” models.

Both particles also display differences between their strain and their dis-

placement. Although atoms in particle 2 are displaced further from equilibrium,

the overall strain is lower compared to particle 1. Differences in the particle strain

distributions come from a number of effects, including size differences, sample en-

vironment differences, and shape differences. Although we cannot untangle all the
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Figure 4.2: Isosurface (25%) projections of strain (∂u111
∂x111

× 103) and displacement

(in lattice units) for (a) particle 1 (ex-situ, pristine state) and for (b) particle 2

(in-situ, pristine state) at 50 nm resolution.

effects here, the more symmetric particle (2) is less strained on the surface. Cross

sections showing the interior distribution of compressive/tensile strain in particles

1 and 2 are shown in Figure 4.3. We see immediately that the smaller, more sym-

metric particle 2 is much more homogeneous in terms of strain than particle 1.

Assuming, again, that lithium insertion is the dominating effect in the strain of

the pristine state, we see that the particles really are inhomogeneously lithiated.

These maps, as well as those in Figure 4.2, help us visualize the effects of size,

shape, and lithium content on the strain in these cathode particles. This full three

dimensional information can be used to determine, quantitatively, the amount of

strain in any region.

Table I shows the root mean square strain for the total particle as well as for

center (150 nm sphere) and surface (150 nm shell) regions. Both particles display

the same feature: surface strain is higher than central strain. We expect surface

effects to be important in nano particles and we see evidence of that here. Surface
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Figure 4.3: Cross sections showing the interior distribution of strain in (a) particle

1 and (b) particle 2 at 50 nm resolution.

Table 4.1: Table I. Quantitative strain metrics for the two particles.

Particle Total Strain Center Strain Surface Strain
1, ex-situ 1.02× 10−5 2.21× 10−4 3.79× 10−4

2, in-situ 1.25× 10−5 1.97× 10−4 2.07× 10−4
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strain in these particular type of particles is connected to Mn3+ on the surface,

produced by high calcination temperature [92]. As mentioned previously, both

simulation [114] and experiment [18] point to the formation of Mn3+, although

through different mechanisms.

Mn+3 has four 3d electrons, and in a six-coordinated oxygen environment

it can undergo what is known as a Jahn-Teller distortion and displace the atom

from its equilibrium position [140]. The Jahn-Teller (JT) theorem states that in

a nonlinear molecule, if degenerate orbitals are asymmetrically occupied, a dis-

tortion occurs to remove the degeneracy and lower the overall energy. Significant

distortions occur in d4 high spin ions octahedral ions, which include Mn+3. Unfor-

tunately, the JT theorem is unable to predict the magnitude of the distortion.

Equal concentrations of Mn+3 and Mn+4 are observed in LiMn2O4 [80].

Introducing Nickel reduces the concentration of Mn+3 and improves capacity re-

tention [59, 80]. In our particular sample, we compare the measured discharge

capacity to the theoretical capacity and arrive at a relative concentration of 13%

Mn+3. We will use this number to calculate the magnitude of the JT effect after

making several other assumptions, including: the calculated compressive/tensile

strain is due only to the JT effect, the strain from multiple ions acts in a collective

fashion and simply adds, and the influence of other atoms in the unit cell on the JT

distortion is negligible. Under these assumptions, the percent distortion along the

z-direction, δz/z, is calculated to be 2.6×10−4. This is very small local distortion,

as compared to other collective JT distortions, such as the distortion in KCuF3

which is 5.3× 10−2.

4.7 Conclusions

Electron density and (111) displacement maps were retrieved using diffrac-

tion data from pristine LiNi0.5Mn1.5O4−δ cathode in both ex-situ (particle 1) and

in-situ (particle 2) experiments at Beamline 34 ID-C at the Advanced Photon

Source. We applied CXDI to a real system, and gained insight into the strain

in this important class of materials. The compressive/tensile strain, which can
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be an indication of the local lithium concentration, was calculated from the gra-

dient of the displacement. These strain maps call into question the assumption

of homogeneity across “shells” used in theoretical models. The strain maps also

demonstrate how particle shape, size, and environment can shape the strain dis-

tribution, which influences electrochemical performance. Strain inhomogeneity in

single cathode particles was not documented before. The strain was quantified in

terms of the root mean square, and the surface strain can be explained by Mn3+

that undergoes a local JT distortion. We are able to calculate the magnitude of

this local distortion under a number of assumptions and compare it with a known

collective JT distortion of another system.
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Chapter 5

Single particle nanomechanics in

operando batteries via lensless

strain mapping

5.1 Abstract

We reveal three-dimensional strain evolution of a single LiNi0.5Mn1.5O4

nanoparticle in-situ in a coin cell battery under operando conditions during charge

and discharge cycles with coherent x-ray diffractive imaging. We report direct

observation of both stripe morphologies and coherency strain at the nanoscale.

Our results suggest the critical size for stripe formation is 50 nm. Surprisingly,

the single nanoparticle elastic energy landscape, which we map with femtojoule

precision, depends on charge versus discharge, indicating hysteresis at the single

particle level. This approach opens a powerful new avenue for studying battery

nanomechanics, phase transformations, and capacity fade under operando condi-

tions at the single particle level that will enable profound insight into the nanoscale

mechanisms that govern electrochemical energy storage systems.

36
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5.2 Introduction

Lithium ion batteries are ubiquitous in mobile devices [9], increasingly used

in transportation [9], and promising candidates for renewable energy integration

into the electrical grid [40] provided the degradation of electrochemical perfor-

mance upon use can be understood, mitigated, and ideally eliminated [8]. Central

to degradation mechanisms in nanostructured electrodes, which are increasingly

used in batteries due to their enhanced functionality, are the nanomechanics of

lithium ions, which remains insufficiently characterized at the single particle level

under operando conditions [14, 145]. In particular, nanostructured spinel mate-

rials such as disordered LiNi0.5Mn1.5O4 (LNMO) are appealing as high voltage,

high capacity, environmentally friendly, and low cost cathodes for use in numerous

markets [37]. However, capacity loss due to degradation is limiting its current

use. Important degradation processes, including active material cracking, discon-

nection, and impedance increase can be understood in terms of strain evolution

at the single particle level. Strain needs to be imagined in-situ under operando

conditions in order to provide insight into real processes and mechanisms [131].

Thermodynamic considerations characterize the type of strain induced in

particular sections of the voltage profile [66]. A composition dependent voltage in-

dicates a solid solution regime in which (de)insertion kinetics induce strain, which is

an indirect probe of lithium concentration [123]. Flat, or composition independent,

voltage profiles typically indicate two-phase coexistence [66], which induces strain

required to maintain coherent (or semi-coherent) interfaces between the phases,

known as coherency strain [19]. Several key material properties can be derived

from both the number and width of coherent interfaces formed in a single particle

[34], although there is some debate as to the mechanics of two-phase coexistence in

several important materials (e.g. LiFePO4) due to the high elastic energy required

[36].

Elastic energy is useful in describing structural two-phase coexistence in

battery materials, which is key to understanding degradation due to damaged in-

duced by the lattice mismatch [8, 112]. The strain generated during, for example,

the cubic-tetragonal phase transformation in LiMn2O4 causes irreversible damage,
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including defect nucleation, which leads to large capacity fade [8]. Structural trans-

formations can be understood by mapping the elastic energy landscape, i.e. the

barrier height and width between the two energy minima. This two-state formal-

ism is ubiquitous, and very successful in describing diverse phenomena including

formation of ferromagnetic and ferroelectric domains [107], spinodal decomposition

[19], early universe scenarios [124], and simple molecules [54]. Applied to batteries,

it could suggest avenues to mitigate phase transformation induced damage.

Nanoscale strain measurement is thus useful in mapping lithium inhomo-

geneity, determining key material properties, and discerning the energy landscape,

provided the full three dimensional information is known. Coherent x-ray diffrac-

tion imaging (CXDI) in Bragg geometry is a powerful tool that can provide this

strain information at the nanoscale by utilizing interference from coherent x-rays

coupled with phase retrieval algorithms to reconstruct the electron density and

out of equilibrium displacement of nanocrystals [142, 102, 97, 32]. Recently, we

used CXDI to map strain in pristine LNMO cathode particles and discovered in-

homogeneous strain distributions that can be explained by a competition between

various effects [123].

In this chapter, we elevate CXDI to in-situ, in-operando conditions to study

the spatial and temporal strain evolution of a single nanoparticle in a LNMO

cathode over the entire voltage profile during (dis)charge. Upon charging, solid

solution exists for high lithium content, while multiple cubic phases coexistence

for low lithium content [71]. The quantitative impact of each regime on the strain

is largely unknown, and the fundamental lithiation mechanism (i.e. core/shell

or phase field) is unresolved. Additionally, the spatial and temporal kinetics of

the cubic-to-cubic phase transformation are largely unknown. This material thus

displays phenomena pertinent to many promising batteries.

5.3 Results

The experimental setup is depicted in Figure 5.1. Focused coherent x-rays

are incident on an in-situ coin cell and the signal scattered by an individual LNMO
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Figure 5.1: Experimental schematic of the in-situ CXDI setup with lattice con-

stant evolution inset. Diamonds and squares show lattice evolution during dis-

charge and charge, respectively. The scale bar for diffraction data is 0.05 nm−1.

particle satisfying the Bragg condition is recorded at the detector. Cross-sections

of the (111) Bragg peak show both the central location, which indicates the average

lattice constant, and the asymmetry, which indicates strain modulations, change

in response to the amount of lithium in the particle [102]. Lattice evolution during

charge (squares) is consistent with our ex-situ x-ray diffraction (XRD) measure-

ment (red stars) taken during charge and literature values [71]. We will denote

the alpha, beta, and gamma phase as the phases with 8.15, 8.1, and 8.0 lattice

constants, respectively, all of which are cubic. During discharge (diamonds) the

single particle lattice shows a different behavior compared to XRD data for the

beta phase, which is likely due to the decrease in diffusivity at low lithiation and
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Figure 5.2: Isosurface projections of strain evolution. The nanoparticle shell and

core both show inhomogeneous strain during discharge. Images are labeled by

their respective lattice constant values and open circuit voltages.

hysteresis between charging and discharging [141]. From the coherent diffraction

data, we reconstruct the three-dimensional displacement field u111 in an individual

cathode particle with 40 nm resolution as defined by the phase retrieval transfer

function. The conversion from phase to displacement for each charge state uses

the average lattice constant of the particle at that charge state. In the two-phase

regions, the initial phase is the reference state. Figure 5.2 displays the compressive

(blue) and tensile (red) strain (∂x111u111) evolution on the shell and core as the

battery underwent the first discharge at a C/2 rate (2 hours for full discharge).

The [111] direction is indicated. A schematic indicates that discharge corresponds

to lithium insertion. The particle is octahedral in shape and roughly 400 nm in

diameter, which is a size and shape commonly observed using scanning electron

microscopy. We use our coherent powder diffraction study to ensure the particle is

representative of the average and stable. Effects due to X-ray exposure were con-

firmed to be negligible by repeated measurements. Note that the voltage is a global

measurement while the particle lattice constant is a single particle measurement.

The strain inhomogeneity in Figure 5.2 is striking. Early in the discharge

cycle (4.7 V, 8.09 Å), strain manifests itself on the surface in the form of domain-

like structures. State 2 (4.6 V, 8.08 Å) shows the onset of coherency strain, which
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we expect due to the flat voltage profile and phase coexistence in this region. State

3 (4.5 V, 8.09 Å) shows the strain builds as the particle nears the structural phase

transformation, and then finally relaxes after the phase transformation (4.2 V, 8.14

Å). X-ray diffraction data (Figure 5.1) suggests that the material at 8.14 Å(4.2 V)

and 8.18 Å(3.5 V) is in the solid solution regime, where compressive/tensile strain

correlates to lithium concentration [123]. The strain is clearly inhomogeneous,

indicating that phase field models of lithiation [110] are more applicable than

core-shell models [28], despite the 3D diffusion pathways in this structure. Strain

is minimized at full lithiation (8.18 Å, 3.5 V), as all unit cells are in principle

equivalent at this point.

Full 3D strain evolution inside the particle during charging is shown in Fig-

ure 5.3 and quite revealing. Beginning with 8.19 Å(3.5 V), we observe competition

between pristine state strain and compressive strain at the edges of the particle

due to the geometric effect described by the Young-Laplace model [103]. During

charge, both 8.143 Å(4.67 V) and 8.142 Å(4.8 V) are in the multiple phase regions

of the lattice constant data (Figure 5.1), which indicates two-phase coexistence and

thus coherency strain. Two-phase coexistence is confirmed at the single particle

level by an in-situ powder diffraction study [108]. To interpret phase separation,

we apply the theory developed by Cahn and Hilliard [19]. The free energy of a

nonuniform binary solution is

F = NV

∫ (
(f0(c) + κ(∇c)2 + 1/2

∑
σijεij

)
dV (5.1)

where the local lithium ion concentration, c, is the order parameter of the

phase field model, NV is the number of molecules per unit volume, and f0(c) =

Ωc(1 − c) + kT (c log c + (1 − c) log(1 − c)) where Ω, k, T represent the regular

solution parameter, Boltzmann constant, and temperature, respectively. The first

and second part of f0(c) are the enthalpic and entropic contributions that favor

phase separation and phase mixing, respectively. The second term in equation 5.1

represents the “gradient energy” with coefficient κ. The final term is the sum of

the product of the stress and strain tensors, which is the elastic energy. Both the

gradient and elastic energy penalize spatial concentration modulation. An initially

homogenous, marginally stable mixture governed by equation 5.1 phase separates
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Figure 5.3: Interior strain distribution on selected cross-sections at positions

shown by the leftmost figure. Single particle strain cross sections show the onset

of coherency strain and resulting stripe patterns at 8.143 Åand 8.142 Å.

under perturbations, despite coherency strain, into a striped morphology that is

preferred due to elastic energy relaxation at the particle boundaries [34, 70]. The

width of the stripes (see Figure 5.3, 8.143 Å(4.67 V) and 8.142 Å(4.8 V)) can be

related to the interfacial energy by a scaling relation [34] derived from minimization

of equation 5.1:

λ = 2w =

√
2γLc
∆f

which implies γ ∼ 106 mJ/m2. Here λ is the period of the striping, γ is the

interfacial energy, Lc is the width of the particle along which the phase separation

occurs, and ∆f is the difference in free energy density between the homogeneous

and coherent phase-separated state. This interfacial energy is similar to LiFePO4

[34, 127] and roughly equivalent to the surface tension of water. The diffuse width

of the stripe boundary, estimated from the images as 50 nm, provides an estimate

for the minimum size for two-phase coexistence [34]. Particles below this size

should not phase separate, but exist entirely as one phase or the other. The width
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of both the stripes and the interface thus reveal significant information about this

LNMO particle.

We also map the elastic energy landscape by utilizing the three-dimensional

strain distribution to evaluate the elastic energy which, under isotropic shear-free

conditions [19], is

Es =

∫
(1/2ΣijσijεijdV ) = (2G+ 3I)/2

∫
(∂x111u111)

2 dV (5.2)

where G and I are the Lame constants for the material, estimated using molecular

dynamics simulations of LiMn2O4 spinel [78], and the volume integral is over the

entire particle. LNMO always maintains a cubic lattice structure (Figure 5.1) so

one strain component is sufficient to evaluate the sum. Elastic strain energy counts

the strain due to deviations of the atoms from their equilibrium position, regard-

less of the underlying cause of the displacement. Figure 5.4 shows the values of the

elastic energy, on the order of femtojoules, at different charge states. The mapping

of the energy landscape reveals surprising dynamics, including a clear difference

in the location, energy, and asymmetry of the energy barrier between charge and

discharge (confirmed for another particle). Although hysteresis in a globally av-

eraged variable, such as the voltage, is expected, this hysteresis is at the single

particle level and involves the three-dimensional strain field. It is unexpected, and

can perhaps be explained by accounting for losses in the form of irreversible elastic

energy release via sound waves, cracks, and dislocation nucleation [127]. Electro-

static repulsion may also play a role in determining the height of the energy barrier

since it is much greater in the high delta vs. low delta states as observed in diffu-

sion coefficient measurements [141]. Alternatively, the “uphill” diffusion required

to form stripes can explain the decrease in effective diffusion coefficients. During

discharge, we successfully pushed the particle from the beta phase to the alpha

phase. During charge, we believe we were on the cusp of transforming from the

alpha phase to either the beta or gamma phase due to the similarity in the strain

distributions between the highest strain state during discharge and that during

charge. The landscape indicates the phase transformation from large to small lat-

tice constant is much worse in terms of elastic energy per unit cell than the reverse
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Figure 5.4: Elastic energy landscape of a single particle during charge and dis-

charge. Energy barriers to the phase transformation are indicated with green

arrows.

transformation, which must be included in modeling. The map suggests that fo-

cusing on ways to minimize the elastic energy, especially upon charge, for example

via the creation of more stripes by decreasing the interfacial energy in some way,

is of paramount importance in increasing capacity retention and lifetime of LNMO

spinel materials.

5.4 Sample preparation

LiNi0.5Mn1.5O4−δ spinel materials with the disordered structure were syn-

thesized using the sol-gel method. The sol solution was prepared from the stoichio-

metric mixture of Ni(CH3COO)2·4H2O (Aldrich), Mn(CH3COO)2·4H2O (Aldrich),

and LiOH·2H2O (Aldrich) in distilled water. Aqueous solution of citric acid was
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added drop-wise to the mixture with continuous stirring. The pH of the solution

was adjusted to 7 by adding an ammonium hydroxide solution. After gel formation

at 70 ◦C with vigorous stirring, the precursor was further dried in a vacuum oven

overnight. The resulting gel precursors were decomposed at 500 ◦C for 12 hours in

air and then calcinated at 900 ◦C for 14 hours in air. The average particle size was

about 700 nm with a range of 400-1000 nm.

5.5 Conclusions

We studied strain evolution in-situ at the single particle level under operando

conditions during (dis)charging using CXDI. We discovered a surprisingly rich set

of phenomena related to strain formation and propagation, coherency strain and

striping, and the evolution of the elastic energy landscape with 40 nm spatial reso-

lution and 0.5 femtojoule energy resolution. Going beyond traditional imaging, we

used the strain mapping to determine key material properties, including the mini-

mum size for two-phase coexistence and the interfacial energy, and we mapped the

asymmetric energy barrier to the structural phase transformation. This approach

unlocks a new, powerful way to conduct in-situ studies under operando conditions

of nanomechanics in many electrochemical energy storage systems at the single

particle level.
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Chapter 6

In-situ strain evolution during a

disconnection event in a battery

nanoparticle

6.1 Abstract

Lithium ion batteries are the dominant form of energy storage in mobile

devices, increasingly employed in transportation, and likely candidates for renew-

able energy storage and integration into the electrical grid. To fulfill their powerful

potential, electrodes with increased capacity, faster charge rates, and longer cycle

life must be developed. Understanding the mechanics and chemistry of individ-

ual nanoparticles under in-situ conditions is a crucial step to improving perfor-

mance and mitigating damage. Here we reveal 3D strain evolution within a single

nanoparticle of a promising high voltage cathode material, LiNi0.5Mn1.5O4, under

in-situ conditions. The particle becomes disconnected during the second charging

cycle. This is attributed to the formation of a cathode electrolyte interphase layer

with slow ionic conduction. The three-dimensional strain pattern within the par-

ticle is independent of cell voltage after disconnection, indicating that the particle

is unable to redistribute lithium within its volume or to its neighbours. Under-

standing the disconnection process at the single particle level and the equilibrium
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or non-equilibrium state of nanoparticles is essential to improving performance of

current and future electrochemical energy storage systems.

6.2 Introduction

Lithium-ion batteries can become the de facto choice for high power en-

ergy storage solutions in both transportation and the integrated smart power grid

provided the degradation of electrochemical performance during use can be under-

stood, mitigated, and ideally eliminated [9, 8]. Spinel materials such as disordered

LiNi0.5Mn1.5O4 (LNMO) are appealing as high voltage, high capacity, environmen-

tally friendly, and low cost cathodes for use in numerous markets [37]. However,

capacity loss due to degradation is limiting its current use.

Important degradation effects [111] include active material cracking [28],

electrochemical disconnection, and impedance increase due to the formation of

electrode electrolyte interphases [130]. Disconnection is an important process as it

leads to loss of active material that decreases specific energy and capacity. Discon-

nection describes the inability of the nanoparticle to exchange electrons with the

current collector and/or ions with the electrolyte under externally applied voltage

and current. Disconnection is usually explained by a combination of factors, includ-

ing surface chemistry change, surface layer formation, particle cracking, particle

movement, or a failure of contact between the particle and the conductive matrix

[95]. However, understanding individual disconnection events is challenging as few

techniques provide a direction measure of a particles connectivity while also elu-

cidating strain or ion concentration fields. As such, root causes of disconnection

for specific materials are yet to be determined. Electron microscopy [65, 86] and

X-ray microscopy [42, 79, 134] are useful tools for understanding degradation in

battery nanoparticles, including cracking. However, both suffer from the inability

to directly determine with a high degree of accuracy whether or not the damaged

particles are still connected. In addition, these techniques do not directly provide

strain evolution and specialized sample environments can be required. Here we

employ a technique known as coherent X-ray diffractive imaging (CXDI). CXDI
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Figure 6.1: Schematic of the experimental setup. Coherent X-rays are inci-

dent on an in-situ coin cell containing the cathode nanoparticle (green isosurface).

Diffracted coherent X-rays are collected on a charge coupled device (CCD).

in Bragg geometry is a powerful tool that relies on synchrotron produced coherent

X-rays and their diffraction from crystalline samples [123, 102, 32, 31, 108]. The

3D electron density and atomic displacement fields are retrievable from coherent

diffraction patterns with the use of phase retrieval algorithms [101, 61]. Strain

fields are the derivatives of the 3D displacement field components. Due to the

high penetrating power of 9 keV X-rays, strain field information under in-situ con-

ditions in real devices can be obtained, ensuring insight into real life processes

[131, 64, 134]. 3D strain information is incredibly useful as a local Li concentra-

tion probe, in understanding structural dynamics during charge transfer, and in

understanding defects and elastic material properties [123].

In Bragg geometry, the sensitivity of the monochromator (10−4) sets the

measurement uncertainty in the lattice constant, orientation, and strain of the

single particle [133]. In LNMO, the lattice constant varies proportionally with

the lithium content, known as solid solution, from 3.5 V (fully discharged) to

approximately 4.7 V. Thus measuring the lattice constant during solid solution
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provides a direct measure as to the particles connectivity.

6.3 Experimental Details

6.3.1 Sample Synthesis

LiNi0.5Mn1.5O4 disordered spinel was synthesized using the sol gel method

[26]. X-ray diffraction data and charge/discharge curves are in good agreement

with the literature [71] and confirm both the Fd-3m unit cell structure and ex-

pected electrochemical performance. The electrochemical cell consisted of LNMO

cathode and lithium metal anode. The electrolyte was a 1M solution of lithium

hexafluorophosphate in a 1:1 volume mixture of ethylene carbonate and dimethyl

carbonate.

6.3.2 Coherent Diffraction Experiment

A double crystal monochromator was used to select E=8.919 keV X-rays

with 1 eV bandwidth and longitudinal coherence length of 0.7 µm. A set of Kirk-

patrick Baez mirrors was used to focus the beam to 1 µm2. The rocking curve

around the (111) Bragg peak was collected by recording coherent diffraction pat-

terns with a charge coupled device camera around 2θ = 18 deg (∆θ = ±0.2 deg).

The particle was imaged after an equilibration procedure consisting of a 30-minute

holding period at constant voltage followed by 30-minute relaxation to open circuit

voltage. After this equilibration procedure, the lattice constant does not change.

Three measurements were performed at each charge state and averaged together

6.3.3 Phase Retrieval

The phase retrieval code is adapted from published work and augmented

to include GPU capability. 90 iterations of the difference map algorithm [43] fol-

lowed by ten iterations of the error reduction algorithm [50, 49] were used and

the algorithm converged after a total of 3150 iterations. The shrinkwrap algo-

rithm [83] was used to update the support every five iterations. The data set
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Figure 6.2: Lattice constant evolution during charging and discharging. In Fig.

2a, the measured lattice evolution is shown in blue circles while the evolution for a

connected particle during discharge is shown in dashed X. Fig. 2b shows the open

circuit voltage at which the measurements were taken.

for each reconstruction is formed by averaging at least 3 independent coherent

diffraction measurements taken in succession at the same charge state. At least

10 reconstructions beginning from random phase starts were averaged for the final

reconstruction. The final resolution of 40 nm was computed via the phase retrieval

transfer function [122].

6.4 Results and Discussion

Figure 6.1 shows schematically the experimental setup. Coherent X-rays

from the synchrotron are incident on an in-situ coin cell containing the battery

cathode. The coin cell casting had a 5 mm opening, which was sealed with kapton
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film on both sides, to transmit X-rays. The windows do not significantly affect

the electrochemical performance or the capacity retention as demonstrated by the

electrochemical performance in the in-situ coin cell during X-ray exposure [108].

The cathode is approximately 80 microns thick and contains randomly orientated

particles as shown by the electron microscopy image. This construction yields

well-separated reciprocal space lattice peaks corresponding to individual particles.

The particle imaged in this work is octahedral in shape and approximately 600 nm

across.

Figure 6.2 shows the average lattice constant of the single particle in blue

circles during charging and discharging. The single particle lattice constant is

determined by the location of the Bragg peak maximum according to Braggs law.

During discharge (Fig.6.2), the lattice increased as lithium is inserted, as expected

[108, 123]. Once fully discharged, the battery is charged and the lattice constant

is expected to decrease as lithium is taken out of the particle. However, the

lattice constant deviates from connected particle behavior (dashed X values) and

only slightly decreases during the charge cycle. The lattice constant changes very

little during subsequent cycling between 3.5 V and 5 V after 16 hours. We thus

conclude that one or both of the particles conduction pathways are significantly

changed after the 8-hour mark. We note that the battery loses some capacity

during each cycle but continues to charge and discharge as expected indicating

that most particles are still connected

In a functional electrode, both electron and ion conductive pathways func-

tion such that charge rates such as C/2 (30 minutes for full charge) are possible.

Ions conduct through the electrolyte while electrons travel through the conduc-

tive matrix, carbon black in this specific case, surrounding the cathode particles.

Disconnection of one or both of these pathways can happen in several ways. One

hypothesis is that the particle lost physical and/or electronic contact with the

conductive matrix. The particle did not move more than 400 nm during this mea-

surement due to the 1-micron beam size and 600 nm particle size. The particle

could move a fraction of 400 nm, which would be sufficient for disconnection, but

it would have to do so while maintaining its exact orientation because the Bragg
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reflection was continuously monitored without changing the sample position. The

Bragg condition is sensitive to a rotation as small as 10−5 radians. Another hypoth-

esis is that the conductive matrix surrounding the particle failed to accommodate

the volume changes during cycling and the particle shrunk away losing contact.

However, since the disconnection happens after discharge, in which the particle

expands, this seems unlikely. In addition, the total volume change is only on the

order of 1%. The particle could crack during the phase transformation, but this

would most likely affect the orientation of a portion, or all, of the particle and

result in a loss of intensity in the Bragg reflection, sensitive to a rotation as small

as 10-5 radians, which we do not observe. A final hypothesis is that X-ray exposure

contributed to the disconnection. However, we successfully imaged multiple par-

ticles throughout multiple charge/discharge cycles in three dimensions using the

same X-ray dose without observing disconnection. A change in surface chemistry

resulting in larger ion impedance could also explain the observed behaviour. The

high operating voltage of this cathode makes it particularly susceptible to elec-

trolyte decomposition. Unlike the layer formed at the anode, the so-called solid

electrolyte interphase (SEI) layer [94, 10, 143], little is known about the analo-

gous cathode layer [39]. This cathode layer, which could take 1-2 charge-discharge

cycles to form, can effectively destroy the ion conduction pathway if the surface

species formed are poor ion-conductors and thus limit ion diffusion. Upon closer

inspection of Fig. 6.2, the lattice constant does change very slightly in the expected

direction after the 8-hour mark. This implies that the particle can still respond but

the timescale for ion transport is orders of magnitude slower than before, which

is consistent with the formation of a surface layer. We estimate the capacity loss

from the first to third cycle at approximately 1.5%. Assuming all capacity loss

is due to disconnection of active material this corresponds to the disconnection of

1.5x107 particles. 9.85x108 particles are still connected.

We further investigated the cause of disconnection by utilizing the full three-

dimensional displacement field along [111], u111(x, y, z), to compute the compres-

sive/tensile strain field in this direction, ∂x111u111. We computed the strain with

respect to the average lattice constant of the particle at the particular charge state



54

Figure 6.3: 3D Strain evolution throughout the particle during the disconnection

event. Compressive/tensile strain maps before and after the disconnection event

are shown for 6 cross-sections located throughout the particle as shown in Fig. 6.2.

given by Fig. 6.2. Figure 6.3 shows 6 contour slices of the 3D compressive/tensile

strain map at locations indicated by the particle rendering in Fig. 6.3. The three

charge states shown correspond to the yellow highlighted points in Fig. 6.2. At

t=6h (Fig. 6.3), large strain exists in both the core and the shell towards the

bottom of the particle. This state is in the solid solution regime, so the com-

pressive/tensile strain can be thought of as lithium poor and lithium rich regions,

respectively. We thus can see significant lithium inhomogeneity in the bottom 3

contour slices of Fig. 6.3. After the disconnection (Fig. 6.3), a large region of

tensile strain still exists in the particle boundary. This could be due to lithium

trapped in a cathode electrolyte layer of approximately 50 nm. Figure 6.3 show

that the strain map changes only slightly after t = 7 h, which is consistent with

a disconnection event and very slow lattice variation as seen in Fig. 6.2. The

correlation between lattice constant change and strain field evolution shows that

strain evolution is concomitant with lithium concentration changes. The strain

field is not significantly governed by interactions with the environment (including

neighbouring particles or the electrode) that continue to charge and discharge as
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normal. Lithium rearrangement within the particle, which will not change the av-

erage lattice constant, on the timescale of the measurement does not occur after 7

hours since the strain field is unchanged. This is consistent with phase field mod-

els [34, 13]that show concentration fields are determined by a competition between

entropy, enthalpy, and coherency strain. Although the equilibration procedure of

a 30-minute hold at constant voltage, followed by a 30-minute relaxation period

to open circuit voltage occurs at each point, the particles strain field is essentially

unchanged. Lack of detectable changes in the strain field, and by extension ion dis-

tribution, within the particle over 10 hours indicate the particle can be considered

to be in quasi-equilibrium at all times.

We quantitatively investigate the disconnection event by evaluating the

strain field energy. The strain field energy is the sum of the product of the stress

and the strain integrated over the particle. Under the assumptions of cubic sym-

metry and isotropic shear-free conditions in the unit cell, the strain field energy

can be simplified [19]

Es =

∫
(1/2ΣijσijεijdV ) = (2G+ 3I)/2

∫
(∂x111u111)

2 dV (6.1)

where G and I are the Lame constants for the material, estimated using molecular

dynamics simulations of LiMn2O4 spinel [78], and the volume integral is over the

entire particle. LNMO always maintains a cubic lattice structure (Figure 5.1) so

one strain component is sufficient to evaluate the sum. Elastic strain energy counts

the strain due to deviations of the atoms from their equilibrium position, regard-

less of the underlying cause of the displacement. Figure 6.4 shows the values of

the elastic energy, on the order of femtojoules, at different charge states. Initially,

the strain energy is relatively low. However, during the structural phase transfor-

mation the energy increases more than ten fold, indicating a high amount of strain

throughout the particle. This is consistent with structural phase transformations

inducing large strains due to the maintenance of coherent interfaces between two

phases of different lattice constants [8, 112]. The energy then drops, with a slight

modulation upwards before settling at the disconnected value. The fluctuations

of the energy thereafter are due to measurement uncertainty, given by the width
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Figure 6.4: Total strain energy (fJ) of the single nanoparticle during charging

and discharging. Uncertainty is given by the width of the symbols.

of the symbols, and the very slow variation in the lattice parameter as shown in

Fig. 6.2. The values we obtained are consistent with our previous results during

discharge [123].

6.5 Conclusions

We revealed in-situ 3D strain evolution of a single cathode nanoparticle dur-

ing a disconnection event. There are many possible disconnection causes for the

particle we image, including particle movement, inelastic response of the conduc-

tive matrix, and significant particle cracking. The 3D strain map shows significant

lithium inhomogeneity exists near the particle surface, which is consistent with the

formation of a poorly conducting surface layer. Electrode engineering is clearly an

essential component of improving battery life. Finally, the strain map remains

static while the particle is effectively disconnected, indicating the particle is un-

able to rearrange lithium within the particle volume or exchange lithium with its
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neighbours. Thus, strain in this particle is primarily due to Li concentration and

not interactions with the surrounding environment. CXDI is thus able to deter-

mine the connectivity of single battery nanoparticles, possible reasons for their

disconnection, and the equilibrium or non-equilibrium state of single nanocrystals.
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Chapter 7

Topological defect dynamics in

operando battery nanoparticles

7.1 Abstract

Topological defects can significantly alter nanomaterial properties thereby

representing substantial opportunity for defect engineering: the design of desired

functionalities through defect manipulation. However, imaging defects in working

devices with nanoscale resolution remains elusive. Here we report 3D imaging of

dislocation dynamics in individual battery cathode nanoparticles under operando

conditions using Bragg coherent diffractive imaging. Dislocations are static at

room temperature and mobile during charge transport. During the structural

phase transformation, the Li-rich phase nucleates near the dislocation and spreads

inhomogeneously. The dislocation field is a probe of elastic properties and we

find that a region of the material exhibits a negative Poisson’s ratio at high volt-

age. Operando dislocation imaging thus opens a powerful avenue for facilitating

improvement and rational design of nanostructured materials.
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7.2 Introduction

Nanoconfinement causes material properties to differ substantially from

their bulk counterparts in many ways, including and can lead to size-tunable ther-

modynamics, faster intercalation kinetics, and extended life cycles [47] . Defect

engineering can be used to further design and optimize properties due to the sig-

nificant influence of defects on material properties [20, 106],. Motivated by this

opportunity, many researchers worked to develop imaging techniques capable of

resolving defects, in particular dislocations [68, 98].

The observation of dislocations using techniques such as X-ray topography

[99, 116] and reciprocal space mapping X-rays dates back to the 1950s [76, 75, 91].

The coherence of third generation synchrotron X-ray beams enabled several new

defect imaging techniques [77], including phase contrast tomography [33] and Bragg

X-ray ptychography [115], which was recently used to visualize the displacement

field of a dislocation in silicon. For a recent review of defect imaging using coherent

methods, see [1]. Bragg coherent diffraction imaging (BCDI), used in this work,

relies on interference produced by coherent x-rays and coupled and phase retrieval

algorithms to reconstruct the 3D electron density and atomic displacement fields

in nanocrystals [31, 125, 123, 136]. The displacement field information BCDI pro-

vides is complementary to the aforementioned techniques and crucial in identifying

the character of single dislocations. BCDI can also track, with nanoscale resolu-

tion, buried single defects under operando conditions thereby accelerating defect

engineering in materials for energy storage, conversion, and catalysis.

The role of dislocations in Li-ion battery performance remains largely un-

derexplored, and one of the few areas where materials can be further optimized.

On the one hand, the appearance of dislocations correlates with capacity loss [132]

as dislocations induce stress and strain. On the other hand, dislocations can relieve

strain during phase transformations by allowing the interface between the phases

to decohere, and thus prevent cracking and the associated active material loss and

undesirable surface reactions with the electrolyte [117, 128]. In order to understand

these nuances, we must first track single defects in operating devices under working

conditions. Here we use BCDI to study single defects in the nanostructured disor-
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Figure 7.1: Bragg coherent diffractive imaging experiment schematic. Coherent

X-rays (red) are incident on a cathode nanoparticle (green).

dered spinel material LiNi0.5Mn1.5O4 (LNMO). LNMO is a promising high voltage

cathode material in which the lithium diffusion pathway is three-dimensional [138].

In addition, the material exhibits both two-phase coexistence and phase transfor-

mations at certain lithium concentrations during charge and discharge as evidenced

by both electrochemical and diffraction data [71, 104, 108, 128]. The phases are

different in their lattice constant but have the same symmetry group (Fd-3m).

The experimental setup is shown schematically in Figure 7.1. Focused co-

herent X-rays are incident on an in-situ coin cell that contains the nanoparticulate

LNMO cathode material. The X-rays scattered by a single LNMO particle satisfy-

ing the (111) Bragg condition are recorded on an area detector. The experimental

geometry combined with the random orientation of the cathode nanoparticles en-

sures that the (111) Bragg reflections corresponding to separate particles are well

separated and an individual reflection can be isolated on the detector. The bat-
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Figure 7.2: Edge dislocation displacement field identified in a single LNMO cath-

ode nanoparticle. Edge dislocations are identified by comparing the measured and

predicted displacement field.

tery was cycled 101 times at a fast rate (30 minutes for full charge) prior to the

imaging experiment to induce dislocations. From the coherent diffraction data,

we reconstruct both the 3D distribution of electron density, ρ(x, y, z), and the 3D

displacement field along [111], u111(x, y, z), in an individual cathode nanoparticle.

Figure 7.2 shows a cross-section of the 3D displacement field (u111(x, y, z =

z0)) in the cathode nanoparticle. The [111] direction is along the x-axis while

the X-ray beam is along the z-axis. To determine the defect type responsible for

the displacement field, Fig. 7.2 shows the displacement field magnitudes at a fixed

radius, r, as a function of azimuthal angle, θ. Depending on the defect type, this

angular distribution will have distinct features. For example, displacement fields

generated by screw dislocations must vary linearly with θ [67]. Edge dislocations

produce displacements both perpendicular and parallel to the extra half plane
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given by [67]

u⊥ =
b

2π
(θ +

sin 2θ

4(1− ν)
) (7.1)

u‖ = − b

2π
(
(1− 2ν)

4(1− ν)
log(r2) +

cos 2θ

4(1− ν)
) (7.2)

where r and θ are the radial and azimuthal coordinate, b is the Burgers vector

length and ν is Poisson’s ratio. Thus an edge dislocation produces a displace-

ment field that varies linearly with θ with an additional periodic modulation. By

inspection of Fig. 7.2, we identify the displacement field as resulting from edge

dislocations.

We quantitatively determined the edge dislocation properties and the elastic

properties in the nearby region by using Eqs 7.1 with b and ν as fit parameters.

Other elastic parameters determined from the displacement field are consistent

with expectations. The crystallographic geometry of the edge dislocation with

respect to [111] is determined from the 3D displacement field to be 50± 8 deg, in

good agreement with the predicted value of 54 deg for an edge dislocation along

< 100 >. The fitted Burgers vector magnitude of 8± 1Å is in excellent agreement

with the lattice constant along < 100 >, which is 8.16Å, and the fitted Poisson’s

ratio of 0.27± 0.1 agrees with the bulk value of 0.3 in the discharged state [28].

We mapped the edge dislocations in 3D, and by repeated measurements

confirmed they were static on the order of an hour at room temperature. Figure 7.3

shows the evolution of the dislocation line as a function of charging. The width of

the dislocation line reflects the uncertainty in the position as determined by the

phase retrieval transfer function.

Interestingly, we observe dislocation line movement as a function of charge

transport, which means the dislocations are stable at room temperature and dy-

namic under applied current. There is clear inhomogeneity in the amount of move-

ment among different line segments and it does not appear to be random. In fact,

there is preferential movement towards the boundary of the particle.

We perform fits as shown in Fig. 7.2 to all dislocations as a function of

charge state in order to locally determine the Poisson’s ratio in the single particle
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Figure 7.3: 3D Edge dislocation line evolution due to charging. In Fig. 3A, the

evolution of the dislocation line at three different charge states is shown. Fig. 3B

shows the same evolution as in Fig. 3A for a different view.

along the dislocation line

Figure 7.4 shows Poisson’s ratio of the particle in the vicinity of the dis-

location line as a function of charge state. At full lithiation (discharged), the

local Poisson’s ratio is in excellent agreement with the literature value of 0.3 [28].

However, the lithium concentration changes as a function of voltage and is known

to change material properties, including Youngs modulus [78] and the diffusion

coefficient [141]. Surprisingly, here we observe Poisson’s ratio decrease during

delithiation, eventually becoming negative at roughly 4.5 V.

A possible explanation of the negative Poisson’s ratio, or auxetic prop-

erty, could be due to the peculiar structural changes in LNMO. It is known that

materials are auxetic for a variety of reasons, including microstructures, such as re-

entrant honeycombs, and due to phase transformations [58]. For example, auxetic
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Figure 7.4: The evolution of the local Poisson’s ratio as a function of voltage and

the proposed auxetic mechanism occurring in the LNMO unit cell. The proposed

auxetic re-entrant honeycomb structure is shown in black in Fig. 4C.

behavior was attributed to a hinge-like structure in spinel CoFe2O4 [126], which

has the same structure as LNMO. We hypothesize that a hinge-like mechanism as

diagrammed in Fig. 7.4 is responsible for the reduction in the measured Poisson’s

ratio. At 4.5 V and higher, all of the Mn3+ are oxidized to Mn4+, which makes the

Mn-O bond exceptionally strong because of the superior ligand field stabilization

energy of Mn4+ due to its half filled t2g level [138]. This leads to strong and weak

bonds within the crystal, and ultimately to the hinge structure. As the voltage

is increased and more Lithium is removed, the hinge structure moves more freely

and consequently the Poisson’s ratio decreases.

If correct, the delithiated LNMO spinel would be incredibly strain tolerant

and have a host of new applications [44], including being used to prevent structural

collapse in layered oxide materials at high voltages when blended as a nanocom-

posite [135]. The auxetic property may also explain why this material is relatively

resistant to losing oxygen from the crystal structure at high voltage.
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Near 4.7 V, LNMO exhibits two-phase coexistence and a structural phase

transformation during charge and discharge as evidenced by both electrochemical

and diffraction data [66, 71, 108]. The two phases differ in their lattice constant

while the symmetry group of the crystal remains the same. At the single par-

ticle level, the phase transformation manifests itself as a splitting in the (111)

diffraction peak indicating two lattice constants are present. Figure 7.5 shows the

displacement and strain field evolution within the nanoparticle at two measure-

ment times (left and right) corresponding to 4.7 V and 4.69 V during the onset of

the phase transformation during discharging. Again, the x-axis corresponds to the

[111] direction.

In Fig. 7.5 we qualitatively identify an edge dislocation by inspection of

the displacement field. Approximately 20 nm higher, the Li-rich phase nucleated

above the dislocation and created tensile strain due to its larger lattice constant.

Thus, the observed dislocation is near the phase boundary between the Li-rich and

Li-poor phase. From their proximity, we conclude that the dislocation likely acts

as a nucleation point for the new phase during the phase transformation, which is

expected from theoretical calculations [38]. Interestingly, Figures 5B-C show that

further discharge causes the Li-rich phase to expand further into the particle as

opposed to nucleating a new phase region a significant spatial distance away. This

suggests the near-equilibrium pathway for the phase transformation at the single

particle level. The observation of a phase boundary is quite interesting in light

of recent results showing the absence of a phase boundary during fast charging in

LiFePO4 [81]. The relatively slow cycling rate (4 hours for full charge) used in this

study is most likely responsible for this discrepancy.

7.3 Conclusion

We studied topological defect dynamics in crystalline nanoparticles under

operando conditions using Bragg coherent diffractive imaging. We discovered edge

dislocations that are static at room temperature and dynamic in response to charge

transport. The 3D dislocation displacement field serves as a local probe of elastic
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properties and we observe that at high voltage Poisson’s ratio in the vicinity of

the dislocation is vastly different from that at lower voltages. This calls for further

investigation into using lithium ions to tune material properties and could explain

why LNMO is resistant to oxygen evolution at high voltage. We anticipate that

imaging of dislocations can be used as a nanotechnology to locally probe elastic

properties in nanomaterials and that LNMO could improve the strain tolerance of

other cathodes. We reconstructed the onset of the phase transformation, observed

the dislocation act as a nucleation point, and showed how the phase expands into

the particle. Our results open up the imaging of weakly strained phase transfor-

mations to BCDI and unlock the potential for a synthesis/imaging feedback loop

to engineer dislocations at the nanoscale.
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Figure 7.5: Displacement and strain dynamics during the onset of the structural

phase transformation. Fig. 5A. shows the edge dislocation. Fig. 5B. shows the

time evolution of the strain field in the [111] direction ∂111u111 at one cross-section

higher than in Fig. 5A. Fig. 5C. again shows strain field evolution.



Chapter 8

Creating universes with thick

walls

8.1 Abstract

We study the dynamics of a spherically symmetric false vacuum bubble

embedded in a true vacuum region separated by a “thick wall”, which is generated

by a scalar field in a quartic potential. We study the “Farhi-Guth-Guven” (FGG)

quantum tunneling process by constructing numerical solutions relevant to this

process. The “Arnowitt-Deser-Misner” (ADM) mass of the spacetime is calculated,

and we show that there is a lower bound that is a significant fraction of the scalar

field mass. We argue that the zero mass solutions used to by some to argue against

the physicality of the FGG process are artifacts of the thin wall approximation

used in earlier work. We argue that the zero mass solutions should not be used to

question the viability of the FGG process.

8.2 Introduction

While our universe appears to be well described by ΛCDM cosmology and

slow-roll inflation, much about the pre-inflationary universe remains speculative.

Numerous models rely on quantum tunneling from some previous state to give an
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inflating universe that eventually leads to the universe we observe today (see for

example [4]).

We consider here the Farhi-Guth-Guven” (FGG) process which was origi-

nally studied in the “thin wall” limit [45],[51]. In this process, a bubble of false

vacuum, known as the seed bubble, is separated by a thin domain wall from a

region of true vacuum. Einstein’s equation implies two distinct solutions for the

motion of the bubble wall; the first eventually collapses while the second expands

indefinitely [16]. The possibility of tunneling between these two states is consid-

ered. Although FGG consider the case where a seed somehow forms in Minkowski

space, other cases were considered (for example in [5]) where the seed forms from

Hawking radiation in de Sitter space. Either way, the seed collapses into a black

hole but hidden behind the black hole horizon is the expanding solution. The

mass of this bubble, M , is the m parameter in the usual Schwarzschild metric, the

“ADM” mass.

FGG is known to dominate over Coleman-de Luccia type tunneling[3] and

it has been argued that this process can produce inflating universes that do not

originate from classical singularities [45, 51, 2]. Despite these features, many cal-

culations that study tunneling in cosmology (for example in the string theory

“landscape” [69]) ignore FGG, primarily because of various arguments that this

process might not be physical [55, 3]. In this paper we address one of the argu-

ments against the physicality of the FGG process, one that involves taking the

bubble mass M to zero[3].

The M → 0 limit of the thin wall formula leads to a prediction of the FGG

process that the probability of transitioning from the seed bubble to the inflating

bubble remains finite even as the mass of the seed bubble is taken to zero. This is

the ultimate free lunch, since it implies our universe was possibly nucleated from

zero matter Minkowski space. However, here we argue that this limit is an artifact

of the thin wall approximation which assumes that the thickness of the domain

wall is small compared to the radius of the bubble. Indeed, as the radius of the

bubble is taken to zero (as it is in the M → 0 limit), one should expect the thin

wall approximation to breakdown.
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In this article we examine bubbles of false vacuum separated by a “thick

wall”, i.e. scalar field solutions that interpolate between regions of true and false

vacuum. We construct numerical solutions for the scalar field coupled to gravity

that are relevant to the FGG process. Probably our most important point is

an extremely simple one: For a fixed potential the types of possible bubbles are

limited and the M → 0 cannot even be taken. So if one has a particular scalar

field potential in mind one is unlikely to encounter the issues raised in [3] about

FGG.

In this work we go beyond this simple point by exploring the parameter

space of a general quartic scalar field potential (with an overall scale fixed). We

find solutions in such potentials cannot approach the step-function type solutions

for φ that are assumed in the thin wall case, even when the potential is made as

“thin wall” as possible. Instead, the scalar field inevitably “spills over” and zero

mass solutions are unattainable. By comparison, the thin wall M → 0 limit relies

on exact Schwarzschild space outside the bubble while taking the bubble radius to

zero. While it may be possible to find an exotic potential with M arbitrarily small,

we show that no quartic potential with a fixed overall scale admits such solutions.

8.3 The thin wall revisited

8.3.1 The setup

Imagine embedding a spherically symmetric bubble of false vacuum, the

seed bubble, in a region of true vacuum separated by a domain wall of negligible

thickness with surface energy density σ as pictured in Fig. 8.1. The thin wall

approximation assumes that the false vacuum is de Sitter space, the true vac-

uum is Schwarzschild, and the stress energy tensor is discontinuous at the domain

wall. Note that we can also allow for a cosmological constant everywhere, and the

exterior simply becomes Schwarzschild - de Sitter.

The classical solutions are discussed extensively in [16] and it suffices to

repeat a few key results. The mass M of the bubble is the usual Schwarzschild

parameter m in the static foliation. This mass can be rewritten as
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M =
Λ2r3

2G
+ 4πσr2

√
1 + ṙ2 − Λ2r2 − 8π2Gσ2r3 (8.1)

where Λ is the cosmological constant, G is Newton’s constant, σ is the surface

energy density of the wall, and r is the radial coordinate in the static de Sitter

and Schwarzschild foliations. Note that the naive limit r → 0 appears to give zero

mass solutions.

One can use the junction formalism developed in [15]. The basic strategy

is to place a coordinate system on the wall and demand continuity of the metric

tensor. Then utilizing Einstein’s equation, the rescaled radial coordinate, z, obeys

the following equation

ż2 + V (z) = E

which is identical to that of a particle moving in a one dimensional potential. We

know that if V > E, then two solutions exist, but classically the particle cannot

move across the barrier. We can, however, have quantum tunneling between the

two solutions.

8.3.2 The two solutions

As previously mentioned, two possible solutions exist for the classical mo-

tion provided M < Mcr where Mcr ∼ Λr̂3 is the characteristic mass of the problem

[16]. Here r̂ is the radius of the bubble wall. Type (a) solutions are bounded

solutions that begin at r̂ = 0, expand to some r̂ = rmax before collapsing back to

zero. These solutions avoid a classical singularity, as discussed in FGG, because

the trajectory on the Kruskal diagram crosses to the right of the origin and a closed

“anti-trapped” surface no longer exists. This point is further elucidated in [2].

Second, there are bounce solutions in which r̂ approaches infinity in the

asymptotic past, falls to some minimum value, and expands again to approach

infinity in the asymptotic future. The Penrose theorem implies that this space-

time must have emerged from an initial singularity, since the bubble radius grows

beyond (Λ)− 1
2
. The way to avoid this classical singularity yet still produce an



72

inflating universe is to consider tunneling between the two solutions. The two

solutions are of identical mass and thus identical energy. This is the FGG process.

The tunneling probability can be calculated using a functional integral [45]

or a canonical quantization [51]. In either case, the probability of tunneling be-

tween the two solutions remains finite as the mass of the seed bubble, an input

parameter, is taken to zero.

8.4 Visiting the thick wall

Consider a scalar field minimally coupled to gravity in a quartic potential,

described by the following action

S =
1

2
m2
P

∫
d4x
√
−g(R−∇aφ∇bφg

ab − 2V (φ)) (8.2)

where V (φ) = λφ4 − γφ3 +
m2

i

2
φ2, mi is the inflaton mass, and mP is the reduced

Planck mass. A particular potential is shown in Fig. 8.2.

We work in a +2 metric signature, in reduced Planck units where ~ = 1, c =

1 and mP =
√

8πG
−1

. One can then nondimensionalize the problem by rescaling

the coordinates, for example by using r∗ = rmP . This rescales the potential to

V (φ) = λφ4 − γφ3 +
m2
i

2m2
P

φ2

Here φ, λ and γ are all dimensionless. In what follows, all coordinates and quan-

tities are dimensionless with mi = mP . Keeping mi fixed allows us to explore the

properties of the bubble solutions without allowing the overall scale of the poten-

tial to vanish (in that case one does expect solutions with M approaching zero to

be possible). Fixing mi to the value mP is convenient for the dynamic range of our

numerical work is also a common choice in inflationary models. We use standard

spherical, (t, r, θ, φ), coordinates. Under the assumption of spherical symmetry,

the spacetime line element takes the form

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2 (8.3)

Note that we have not forced the metric in any region to take the de Sitter or

Schwarzschild form, although we do require that the spacetime is asymptotically
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flat at large r. Here r is both a coordinate and the measure of proper area. The

stress-energy tensor of a scalar field in a potential is

Tab = ∂aφ∂bφ−
1

2
gab
(
∂cφ∂dφg

cd + 2V (φ)
)

(8.4)

Defining mass in the thick-wall case is more involved, since we no longer

have a region of exact Schwarzschild space or a fixed wall position where one can

place an observer. Instead, we focus on the ADM mass, which is defined at spatial

infinity for asymptotically flat spacetimes. This is the most relevant mass for

tunneling calculations [5]. This mass is defined as [27]

M = 2π

∫ ∞
0

drr2

(φ′
a

)2

+

(
φ̇

α

)2

+ 2V (φ)

 (8.5)

where prime denotes differentiation with respect to r while dot denotes differenti-

ation with respect to time.

The tt and rr components of Einstein’s equation and the scalar field equa-

tion are used to find the turning point. They are listed below. The θθ equation is

used as a consistency check.

2a3(r2V − 1)− 4ra′ + a(2 + r2φ′2) = 0

2

r
+ a2(2rV − 2

r
) + 4

α′

α
= rφ′2

a2

α2
(α2dV

dφ
− 1

r2
) +

a′

a
φ′ − (

2

r
+
α′

α
)φ′ = φ′′

We use a 4th order Runge-Kutta scheme with adaptive mesh refinement. In true

S - dS static spherical coordinates, there is a horizon when 1− 2m/r − Λ/r2 = 0.

We cannot check this condition a priori, because we do not know the mass of the

space-time. However, we check it after and make sure that the computational

domain does not include the horizon. Note also that, if there was a horizon inside

the computational domain, it would be apparent in the metric functions.

We want to find solutions for a bubble of false vacuum embedded in true

vacuum, i.e. we want to find the radial profiles and time evolution of φ, α and a.

This is done by demanding that φr=rmin
take the value of the false minimum of
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the potential, so that V (φm) acts as a cosmological constant near the origin. We

also investigated cases in which the scalar field was not initially at the minimum

of the potential, which include the extreme case in which φr=rmin
= φr=rmax = 0.

In this case, the solution is not just a constant φ profile, and so even this solution

has some mass.

8.4.1 The turning point

For the purposes of this article it suffices to examine the properties of the

classical solutions relevant to the FGG process. There is no need to find the

tunneling solutions and the corresponding tunneling actions to make our points.

Furthermore, we can understand the relevant properties of these solutions (namely

the ADM mass) simply by finding the solution at its turning point, which further

simplifies our calculations. At the turning point α̇ = ȧ = φ̇ = 0 but second order

time derivatives are nonzero. In this case, equation 8.5 reduces to

M = 2π

∫ ∞
0

r2

[(
φ′

a

)2

+ 2V (φ)

]
dr (8.6)

Using Einstein’s equation, this can be rewritten as (again setting mi = mP ),

M =
4π

3

∫ ∞
0

(
2ra′

a3
− 1

a2
+ 1

)
dr

so we see that dm/dr = 0 only for the Schwarzschild metric, as expected. Addi-

tionally, substituting the de Sitter metric into 8.6 gives the energy density times

the volume of the bubble, just as one would expect.

Inspection of Eqn. 8.6 (which is positive definite since V (φ) is everywhere

positive) one can see that we do not expect to find M ≡ 0 solutions, but there is

no apparent reason why a smooth limit to zero should not exist.

There is freedom to specify the spatial profile of φ̈ at the turning point,

which we choose to be φ̈ = c/r2 for a constant c. This is consistent with spherical

symmetry and is sufficiently localized to maintain an asymptotically flat spacetime.

Choosing such an ansatz simply enforces locality of the bubble and does not affect

the generality of our conclusions.
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8.4.2 The two solutions

Evolving forward in time from the turning point solution is used to classify

the solution character. The energy density of the expanding solution expands into

the domain as the metric functions approach de Sitter (see Fig. 8.3). The energy

density of the collapsing solution collapses immediately toward the origin while

the metric functions approach pure Schwarzschild. A plot of T00(t = 0), showing

the “thickness” of the wall, for the expanding solution is given in figure 8.3. Plots

of the field and metric functions for expanding and collapsing solutions are given

in figures 8.4 and 8.5, respectively.

8.4.3 Results of trying to take M → 0

Conceptually, there are two ways in which this can be done. From a cos-

mological perspective, we can fix the inflaton potential and attempt to take the

mass to zero by changing the initial condition on φ̈.

On the other hand, we can tune the two constants in the potential while

keeping a fixed φ̈. (As discussed and motivated above, we are keeping the overall

scale mi fixed for this investigation.) We begin with a parameter scan over three

orders of magnitude, i.e. ranging the values of λ and γ from 0.1 → 10. Let the

value of the field at the false minimum and the maximum be φmin and φmax, and

the potential evaluated at these points be Vmin and Vmax, respectively. Figures 8.6

and 8.7 show how the mass of the collapsing turning point solution depends on

∆φ = φmin − φmax and ∆V = Vmax − Vmin.

8.5 Discussion

Inspecting Eqn. 8.5, we see that the integrand, dm/dr, will not be zero

unless φ is constant and V (φ) = 0, i.e. exactly Schwarzschild space. The crux of

our argument is that real potentials and fields do not admit nicely separated solu-

tions; the field spills over into the whole domain and affects the metric functions,

preventing the M → 0 limit that appears to exist in the thin-wall formalism.
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We still attempted to push the mass smoothly to zero. However, as Figures

8.6 and 8.7 show, we are unable to push the mass below about 0.1. This is with

a fixed overall scale set by choosing mi = mP . The point is not the value of mi

(setting (mi/mP )2 = 10−3 does not affect our conclusions), but that we have fixed

an overall scale.

In any spherically symmetric problem, there is the issue of what happens

at r = 0. While the numerics cannot evolve such a point, we can make progress

analytically by assuming we approach exact de Sitter space, in which the metric

functions are regular at the origin. The scalar field potential can then be expand-

ing about the minimum to second order in φ. The problem is then analytically

tractable and solutions give positive mass contributions. Thus, our calculation of

M really is a lower bound.

8.6 Conclusion

We considered classical solutions relevant to the Farhi-Guth-Guven tunnel-

ing process. For a generic quartic potential we are unable to take the mass of our

turning point solutions smoothly to zero. Other authors have shown using the thin

wall approximation that the FGG tunneling amplitude remains finite as M → 0,

and this strange behavior has been used to question the physicality of the FGG

process. The absence of M → 0 solutions in our more realistic thick wall calcula-

tions suggest that the M → 0 behavior is an artifact of thin wall approximation

and should not be used to argue that the FGG process is unphysical.
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Figure 8.1: A sketch of a bubble solution. A region of de Sitter false vacuum is

embedded in a region of true vacuum.
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Figure 8.2: A particular φ4 potential with true and false vacuum regions labeled.

This potential is used in the numerical solution.
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Figure 8.3: T00, a component of the stress energy tensor, demonstrating the wall

“thickness”, at a given time.
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Figure 8.4: Turning point slice of geometry and field for the expanding solution.

Here φ is dotted, a is dash-dotted, and α is dashed.
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Figure 8.5: Turning point slice of the collapsing solution. Here φ is dotted, a is
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Figure 8.6: Mass of the collapsing solution, evaluated at the turning point, as

a function of ∆φ. Points represent a scan of potential parameters λ and γ. Small

values of M were not found in the scan.
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Figure 8.7: Mass of the collapsing solution, evaluated at the turning point, as a

function of ∆V . Points represent a scan of potential parameters λ and γ. Small

values of M were not found in the scan.



Chapter 9

Conclusions

Engineering of the structure function relationship for nanoparticles repre-

sents a considerable opportunity for meeting the grand challenges of our time. The

power of nanoparticles lies in the fact that, at the nanoscale, surface effects begin

to play an important role in the thermodynamics. For example, surface tension

can contract the particle’s lattice parameter. The type and degree of faceting can

change the charge transfer kinetics. The size of the particle can determine the

degree of catalytic activity. There are many more examples and the true promise

of nanoparticles in not only physics and materials science, but also in biology,

chemistry, and environmental science is only beginning to be realized.

The very promise of nanoparticles makes them difficult to image with tra-

ditional techniques. Many techniques average over many particles, require special-

ized sample environments, provide only 2D information, and/or are insensitive to

strain. Electron microscopy produces beautiful images, but tends to be limited

to thin samples and specialized sample environments. And yet, without this in-

formation, the full promise of nanoparticles is likely to be unfulfilled. Coherent

x-ray diffractive imaging is the technique used in this thesis and is particularly

adept at resolving both electron density and strain information in 3D under oper-

ating conditions for nanoparticles. CXDI is well suited to imaging thick samples

immersed in reactive environments. It can also image buried structures such as

defects and interfaces. The primary relationship in CXDI is that the scattered

intensity is proportional to the Fourier transform of the electron density, and that
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asymmetries in this intensity distribution are due to strain in the crystal.

The cathode nanoparticles studied in this thesis undergo a variety of in-

teresting and diverse effects. Strain can be generated from ion intercalation, via

the formation of a surface layer, and from defects. The results presented here will

allow others to investigate other cathode nanoparticles, including LiFePO4 and

the layered oxide “NCM” materials and the nature of the ion induced strain. The

ability to track buried edge dislocations in full 3D detail should find use not only

in battery cathode nanoparticles, but also in a host of other applications including

semiconductors and solar cells.

The future is very bright for coherent x-ray imaging. The Advanced Pho-

ton Source at Argonne National Laboratory is planning to upgrade the coherence

properties of the x-ray beam that should result in a factor of around 100 increase

in coherent flux. This increase should allow the resolution of the technique to ap-

proach the scale of Angstroms. In addition, it will allow the investigation of physics

at new time scales. Using current and future sources, coherent x-ray imaging will

undoubtedly play a role in the development of next generation materials.
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